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High-throughput chemical screens typically use coarse assays such as cell survival, limiting what can be
learned about mechanisms of action, off-target effects, and heterogeneous responses. Here, we introduce
“sci-Plex,” which uses “nuclear hashing” to quantify global transcriptional responses to thousands of
independent perturbations at single-cell resolution. As a proof of concept, we applied sci-Plex to screen
three cancer cell lines exposed to 188 compounds. In total, we profiled ~650,000 single-cell transcriptomes
across ~5000 independent samples in one experiment. Our results reveal substantial intercellular
heterogeneity in response to specific compounds, commonalities in response to families of compounds,
and insight into differential properties within families. In particular, our results with histone deacetylase
inhibitors support the view that chromatin acts as an important reservoir of acetate in cancer cells.

igh-throughput screens (HTSs) are a

cornerstone of the pharmaceutical drug-

discovery pipeline (7, 2). However, con-

ventional HTSs have at least two major

limitations. First, the readout of most
are restricted to gross cellular phenotypes,
e.g., proliferation (3, 4), morphology (5, 6),
or a highly specific molecular readout (7, 8).
Subtle changes in cell state or gene expres-
sion that might otherwise provide mecha-
nistic insights or reveal off-target effects are
routinely missed.

Second, even when HTSs are performed in
conjunction with more comprehensive mo-
lecular phenotyping such as transcriptional
profiling (9-12), a limitation of bulk assays is
that even cells ostensibly of the same “type”
can exhibit heterogeneous responses (13, 14).
Such cellular heterogeneity can be highly rel-
evant in vivo. For example, it remains largely
unknown whether the rare subpopulations
of cells that survive chemotherapeutics are
doing so on the basis of their genetic back-
ground, epigenetic state, or some other as-
pect (15, 16).

In principle, single-cell transcriptome se-
quencing (scRNA-seq) represents a form of
high-content molecular phenotyping that could
enable HTSs to overcome both limitations.
However, the per-sample and per-cell costs of
most scRNA-seq technologies remain high,

IDepartment of Genome Sciences, University of Washington,
Seattle, WA, USA. ®Medical Scientist Training Program,
University of Washington, Seattle, WA, USA. *Department

of Biochemistry and Biophysics, University of California,

San Francisco, San Francisco, CA, USA. “lllumina Inc.,

San Diego, CA, USA. °Allen Discovery Center for Cell Lineage
Tracing, Seattle, WA, USA. ®Howard Hughes Medical
Institute, University of Washington, Seattle, WA, USA.
’Brotman Baty Institute for Precision Medicine, Seattle,
WA, USA.

*These authors contributed equally to this work. tThese authors
contributed equally to this work.

fCorresponding author. Email: shendure@uw.edu (J.S.);
coletrap@uw.edu (C.T.)

Srivatsan et al., Science 36'7, 45-51 (2020)

precluding even modestly sized screens. Re-
cently, several groups have developed “cellular
hashing” methods, in which cells from differ-
ent samples are molecularly labeled and mixed
before scRNA-seq. However, current hashing
approaches require relatively expensive re-
agents [e.g., antibodies (17) or chemically
modified DNA oligos (18, 19)], use cell-type-
dependent protocols (20), and/or use scRNA-
seq platforms with a high per-cell cost.

To enable cost-effective HT'Ss with scRNA-
seq-based phenotyping, we describe a new
sample labeling (hashing) strategy that relies
on labeling nuclei with unmodified single-
stranded DNA oligos. Recent improvements
in single-cell combinatorial indexing (sci-
RNA-seq3) have lowered the cost of scRNA-
seq library preparation to <$0.01 per cell,
with millions of cells profiled per experi-
ment (21). Here, we combine nuclear hash-
ing and sci-RNA-seq into a single workflow
for multiplex transcriptomics in a process
called “sci-Plex.” As a proof of concept, we
use sci-Plex to perform HTS on three cancer
cell lines, profiling thousands of indepen-
dent perturbations in a single experiment.
We further explore how chemical transcrip-
tomics at single-cell resolution can shed light
on mechanisms of action. Most notably, we
find that gene-regulatory changes consequent
to treatment with histone deacetylase (HDAC)
inhibitors are consistent with the model that
they interfere with proliferation by restrict-
ing a cell’s ability to draw acetate from chro-
matin (22, 23).

Results
Nuclear hashing enables multisample sci-RNA-seq

Single-cell combinatorial indexing (sci-) methods
use split-pool barcoding to specifically label the
molecular contents of large numbers of single
cells or nuclei (24). Samples can be barcoded
by these same indices, e.g., by placing each
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sample in its own well during reverse tran-
scription in sci-RNA-seq (21, 25), but such
enzymatic labeling at the scale of thousands
of samples is operationally infeasible and cost
prohibitive. To enable single-cell molecular
profiling of a large number of independent
samples within a single sci- experiment, we set
out to develop a low-cost labeling procedure.

‘We noticed that single-stranded DNA (ssDNA)
specifically stained the nuclei of permeabilized
cells but not intact cells (Fig. 1A and fig. S1A).
‘We therefore postulated that a polyadenylated
ssDNA oligonucleotide could be used to label
populations of nuclei in a manner compatible
with sci-RNA-seq (Fig. 1B and fig. S1B). To test
this concept, we performed a “barnyard” experi-
ment. We separately seeded human (HEK293T)
and mouse (NITH3T3) cells to 48 wells of a
96-well culture plate. We then performed nu-
clear lysis in the presence of 96 well-specific
polyadenylated ssDNA oligos (“hash oligos”)
and fixed the resulting nuclear suspensions
with paraformaldehyde. Having labeled or
“hashed” the nuclei with a molecular barcode,
we pooled nuclei and performed a two-level
sci-RNA-seq experiment. Because the hash
oligos were polyadenylated, they had the po-
tential to be combinatorially indexed identi-
cally to endogenous mRNAs. As intended, we
recovered reads corresponding to both endog-
enous mRNAs [median 4740 unique molecu-
lar identifiers (UMIs) per cell] and hash oligos
(median 270 UMISs per cell).

We devised a statistical framework to iden-
tify the hash oligos associated with each cell at
a frequency exceeding background (table S1).
We observed 99.1% concordance between spe-
cies assignments on the basis of hash oligos
versus endogenous cellular transcriptomes
(Fig. 1C and fig. S1, C to F). Additionally, the
association of hash oligos and nuclei was sta-
ble to a freeze-thaw cycle, highlighting the
opportunity to label and store samples (Fig. 1D
and fig. S1, G and H). These results demon-
strate that hash oligos stably label nuclei in a
manner that is compatible with sci-RNA-seq.

In sci- experiments, “collisions” are instances
in which two or more cells are labeled with the
same combination of barcodes by chance (24).
To evaluate hashing as a means of detecting
doublets resulting from collisions, we varied
the number of nuclei loaded per polymerase
chain reaction well, resulting in a range of
predicted collision rates (7 to 23%) that was
well matched by observation (fig. S1I). Hash
oligos facilitated the identification of the vast
majority of interspecies doublets (95.5%) and
otherwise undetectable within-species doublets
(Fig. 1E and fig. S1, J and K).

sci-Plex enables multiplex chemical
transcriptomics at single-cell resolution

We next evaluated whether nuclear hashing
could enable chemical screens by labeling cells
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that had undergone a specific perturbation,
followed by single-cell transcriptional profil-
ing as a high-content phenotypic assay. We
exposed A549, a human lung adenocarcinoma
cell line, to one of four compounds: dexametha-
sone (a corticosteroid agonist), nutlin-3a (a p53-
Mdm?2 antagonist), BMS-345541 (an inhibitor
of nuclear factor kB-dependent transcrip-
tion), or vorinostat [suberoylanilide hydrox-
amic acid (SAHA), an HDAC inhibitor], for
24 hours across seven doses in triplicate for
a total of 84 drug-dose-replicate combina-
tions and additional vehicle controls (Fig. 2A
and fig. S2A). We labeled nuclei from each well
and subjected them to sci-RNA-seq2 (fig. S2, B
to D, and table S1).

We used Monocle 3 (2I) to visualize these
data using Uniform Manifold Approxima-
tion and Projection (26) (UMAP) and Louvain
community detection to identify compound-
specific clusters of cells, which were distributed
in a dose-dependent manner (Fig. 2, B and C,
and fig. S2, E and F). To quantify the “pop-
ulation average” transcriptional response of
A549 cells to each of the four drugs, we mod-
eled each gene’s expression as a function of
dose through generalized linear regression.
A total of 7561 genes were sensitive to at least
one drug, and 3189 genes were differentially
expressed in response to multiple drugs (fig.
S3A and table S2). These included canon-
ical targets of dexamethasone (Fig. 2D) and
nutlin-3a (Fig. 2E). Gene ontology analysis of
differentially expressed genes revealed the
involvement of drug-specific pathways (e.g.,

Fig. 1. sci-Plex uses poly-
adenylated single-stranded
oligonucleotides to label
nuclei, enabling cell hashing
and doublet detection.

(A) Fluorescent images of
permeabilized nuclei after
incubation with DAPI (top) and
an Alexa Fluor-647-conjugated
single-stranded oligonucleotide
(bottom). (B) Overview of
sci-Plex. Cells corresponding

to different perturbations are C
lysed in-well, their nuclei labeled
with well-specific “hash” oligos,
followed by fixation, pooling, and
sci-RNA-seq. (C) Scatter plot
depicting the number of UMIs
from single-cell transcriptomes
derived from a mixture of hashed
human HEK293T cells and
murine NIH3T3 cells. Points are
colored on the basis of hash
oligo assignment. (D) Boxplot
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hormone signaling for dexamethasone; p53
signaling for nutlin-3a; fig. S3B). Addition-
ally, we evaluated whether the number of cells
recovered at each concentration could be used
to infer toxicity akin to traditional screens.
After fitting a response curve to the recovered
cellular counts, we inferred a “viability score”
from sci-Plex data, a metric that was concor-
dant with “gold standard” measurements (Fig.
2F and fig. S2, G to I).

sci-Plex scales to thousands of samples and
enables HTS

To assess how sci-Plex scales for HTS, we per-
formed a screen of 188 compounds targeting a
diverse range of enzymes and molecular path-
ways (Fig. 3A). Half of this panel was chosen
to target transcriptional and epigenetic regu-
lators. The other half was chosen to sample
diverse mechanisms of action. We exposed
three well-characterized human cancer cell
lines, A549 (lung adenocarcinoma), K562
(chronic myelogenous leukemia), and MCF7
(mammary adenocarcinoma), to each of these
188 compounds at four doses (10 nM, 100 nM,
1uM, and 10 uM) in duplicate, randomizing
compounds and doses across well positions
in replicate culture plates (table S3). These
conditions, together with vehicle controls,
accounted for 4608 of 4992 independently
treated cell populations in this experiment.
After treatment, we lysed cells to expose nu-
clei, hashed them with a specific combination
of two oligos (fig. S4A), and performed sci-
RNA-seq3 (21). After sequencing and filtering

Treat cells with __
perturbations

Lyse cells to
expose nuclei

Affix barcodes
to nuclei

based on hash purity (fig. S4, B to F), we ob-
tained transcriptomes for 649,340 single cells,
with median mRNA UMI counts of 1271, 1071,
and 2407 for A549, K562, and MCF7, respec-
tively (fig. S5A). The aggregate expression pro-
files for each cell type were highly concordant
between replicate wells (Pearson correlation =
0.99) (fig. S5B).

Visualizing sci-RNA-seq profiles separately
for each cell line revealed compound-specific
transcriptional responses and patterns that
were common to multiple compounds. For each
of the cell lines, UMAP projected most cells
into a central mass, flanked by smaller clusters
(Fig. 3B). These smaller clusters were largely
composed of cells treated with compounds
from only one or two compound classes (figs.
S6 and S7, A to C). For example, A549 cells
treated with triamcinolone acetonide, a syn-
thetic glucocorticoid receptor agonist, were
markedly enriched in one such small cluster,
comprising 95% of its cells [Fisher’s exact
test, false discovery rate (FDR) < 1%; fig. S7, D
and E]. Although many drugs were associated
with a seemingly homogeneous transcription-
al response, we also identified cases in which
distinct transcriptional states were induced
by the same drug. For example, in A549, the
microtubule-stabilizing compounds epothilone
A and epothilone B were associated with three
such focal enrichments, each composed of cells
from both compounds at all four doses (fig. S7,
F and G). The cells in each focus were distinct
from one another, but transcriptionally simi-
lar to other treatments: a recently identified

Pool nuclei and
perform sciRNA-seq
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Fig. 2. sci-Plex enables multiplex chemical transcriptomics at single-cell resolution. (A) Diagram
depicting compounds and corresponding targets assayed within the pilot sci-Plex experiment. A549 lung
adenocarcinoma cells were treated with either vehicle [dimethylsulfoxide (DMSO) or ethanol] or one
of four compounds (BMS345541, dexamethasone, nutlin-3a, or SAHA). (B) UMAP embedding of
chemically perturbed A549 cells colored by drug treatment. (C) UMAP embedding of chemically
perturbed A549 cells faceted by treatment with cells colored by dose. (D and E) Expression of a
canonical (D) glucocorticoid receptor activated (ANGPTL4) and repressed (GDF15) target genes

as a function of dexamethasone dose or (E) p53 target genes as a function of nutlin-3a dose. y-axes
indicate the percentage of cells with at least one read corresponding to the transcript. (F) Dose-response
viability estimates for BMS345541-, dexamethasone-, nutlin-3a-, and SAHA-treated A549 cells on the

basis of the relative number of cells recovered at each dose.

microtubule destabilizer, rigosertib (27); the
SETDS inhibitor UNC0397; or untreated pro-
liferating cells (fig. S7TH).

We next assessed the effects of each drug
on the “population average” transcriptome of
each cell line. In total, 6238 genes were dif-
ferentially expressed in a dose-dependent man-
ner in at least one cell line (FDR < 5%; fig. S8
and tables S4 and S5). Bulk RNA-seq mea-
surements collected for five compounds across
four doses and vehicle agreed with averaged
gene expression values and estimated effect
sizes across identically treated single cells,
although correlations between small effect
sizes were diminished (fig. S9). Moreover,
sci-Plex dose-dependent effect profiles cor-
related with compound-matched L1000 mea-
surements (17) (fig. S10).

Genes associated with the cell cycle were
highly variable across individual cells, and
many drugs reduced the fraction of cells that

Srivatsan et al., Science 36'7, 45-51 (2020)

expressed proliferation marker genes (figs.
S11 and S12). In principle, scRNA-seq should
be able to distinguish shifts in the propor-
tion of cells in distinct transcriptional states
from gene-regulatory changes within those
states. By contrast, bulk transcriptome profiling
would confound these two signals (fig. S13A)
(14). We therefore tested for dose-dependent
differential expression on subsets of cells cor-
responding to the same drug but expressing
high versus low levels of proliferation marker
genes (fig. S13B). Correlation between the dose-
dependent effects on the two fractions of each
cell type varied across drug classes (fig. S13C),
with some frankly discordant effects for indi-
vidual compounds (fig. S13D). Viability analysis
performed as in the pilot experiment revealed
that after drug exposure at the highest dose,
only 52 (27%) compounds caused a decrease in
viability of 50% or more (Fig. 3C and fig. S5C).
Among the drugs that reduced viability, we
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observed a higher sensitivity of K562 to the Src
and Abl inhibitor bosutinib (Fig. 3C), a result
that we confirmed by cell counting (fig. S14A).
This result is consistent with K562 cells har-
boring a constitutively active BCR-ABL fusion
kinase (28) and an observed increased sensi-
tivity of hematopoietic and lymphoid cancer
cell lines to Abl inhibitors (29) (fig. S14B).

To assess whether each compound elicited
similar responses across the three cell lines,
we clustered compounds using the effect sizes
for dose-dependent genes as loadings in each
cell line (figs. S15 to S18). Joint analysis of
the three cell lines revealed common and cell-
type-specific responses to different compounds
(figs. S19 and S20). For example, trametinib, a
mitogen-activated protein kinase kinase (MEK)
inhibitor, induced a transcriptionally distinct
response in MCF7 cells. Inspection of UMAP
projections revealed trametinib-treated MCF7
cells interspersed among vehicle controls, re-
flecting limited effects. By contrast, trametinib-
treated A549 and K562 cells, which harbor
activating KRAS and ABL mutations (30), re-
spectively, were tightly clustered, consistent
with a strong, specific transcriptional response
to inhibition of MEK signaling by trametenib
(Fig. 3D). Further, we observed that these A549
and K562 cells appeared proximal to clusters
enriched with inhibitors of HSP90, a key chap-
erone for protein folding (Fig. 3D). This obser-
vation was corroborated by concordant changes
in HSP90AA1 expression in trametinib-treated
cells (Fig. 3E). Analysis of Connectivity Map
data (11, 12) revealed further evidence that MEK
inhibitors do indeed induce highly similar gene
expression signatures to HSP90 perturbations
(fig. S14C), especially in A549 but not in MCF7
(fig. S14, D and E). These results are concor-
dant with previous observations of the reg-
ulation of HSP90AA1 downstream of MEK
signaling (31) and suggest that similarity in
single-cell transcriptomes treated with distinct
compounds can highlight drugs that target
convergent molecular pathways.

Inference of chemical and mechanistic
properties of HDAC inhibitors

For each of the three cell lines, the most prom-
inent compound response was composed of
cells treated with one of 17 HDAC inhibitors
(Fig. 3B, dark blue, and table S6). To assess
the similarity of the dose-response trajectories
between cell lines, we aligned HDAC-treated
cells and vehicle-treated cells from all three cell
lines using a mutual-nearest neighbor (MNN)
matching approach (32) to produce a con-
sensus HDAC inhibitor trajectory, which we
call “pseudodose” [analogous to “pseudotime”
(33)] (Fig. 4A and fig. S21). We observed that
some HDAC inhibitors induced homogeneous
responses, with nearly all cells localized to a
relatively narrow range of the HDAC inhibitor
trajectory at each dose (e.g., pracinostat in
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A549), whereas other drugs induced much
greater cellular heterogeneity (Fig. 4B and
fig. S22).

Such heterogeneity could be explained by
cells executing a defined transcriptional pro-
gram asynchronously, with the dose of drug
that the cells are exposed to modulating the

rates of their progression through it. To test this
hypothesis, we sequenced the transcriptomes
of 64,440 A549 cells that were treated for
72 hours with one of 48 compounds, includ-
ing many of the HDAC inhibitors from the
large sci-Plex screen. Upon accounting for
confluency-dependent cell-cycle effects and

MNN alignment (figs. S23 and S24), the co-
embedded UMAP projection revealed new
focal concentrations of cells at 72 hours that
were not evident at the 24-hour time point,
e.g., SRT1024 (fig. S25). However, for the
majority of HDAC inhibitors tested, we did
not observe that cells at a given dose moved
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Fig. 3. sci-Plex enables global transcriptional profiling of thousands of
chemical perturbations in a single experiment. (A) Schematic of the large-
scale sci-Plex experiment (sci-RNA-seg3). A total of 188 small molecules
were tested for their effects on A549, K562, and MCF7 human cell lines, each at
four doses and in biological replicate, after 24 hours of treatment. The plate
positions of doses and drugs were varied between replicates, and a median
of 100 to 200 cells were recovered per condition. Colors demarcate cell line,
compound pathway, and dose. (B) UMAP embeddings of A549, K562, and MCF7
cells in our screen with each cell colored by the pathway targeted by the
compound to which a given cell was exposed. To facilitate visualization of
significant molecular phenotypes, we added transparency to cells treated with
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exact test, FDR < 1%). (C) Viability estimates obtained from hash-based counts
of nuclei at each dose of selected compounds (bosutinib is highlighted in
red text). Rows represent compound doses increasing from top to bottom,
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highlighted by treatment with the MEK inhibitor trametinib (red), an HSP90
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in cells exposed to increasing doses of trametinib. y-axes indicate the
percentage of cells with at least one read corresponding to the transcript.
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farther along an aligned HDAC trajectory at
72 hours (fig. S26). This suggests that the
dose of many HDAC inhibitors governs the
magnitude of a cell’s response rather than its
rate of progression and that any observed
heterogeneity cannot be attributed solely to
asynchrony (fig. S26).

Next, we assessed whether a given HDAC
inhibitor’s target affinity explained its global
transcriptional response to the compound.
We used dose-response models to estimate
each compound’s transcriptional median effec-
tive concentration (TCs), i.e., the concentra-
tion needed to drive a cell halfway across the
HDAC inhibitor pseudodose trajectory (fig.
S27A and table S6). To compare the transcrip-
tionally derived measures of potency with the
biochemical properties of each compound, we
collected published median inhibitory concen-
tration (IC5,) values for each compound from
in vitro assays performed on eight purified
HDAC isoforms (table S7). With the excep-
tion of two relatively insoluble compounds,
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our calculated TCs, values increased as a func-
tion of compound ICs, values (Fig. 4C and
fig. S27, B and C).

To assess the components of the HDAC
inhibitor trajectory, we performed differen-
tial expression analysis using pseudodose as a
continuous covariate. Of the 4308 genes that
were significantly differentially expressed
over this consensus trajectory, 2081 (48%) re-
sponded in a cell-type-dependent manner and
942 (22%) exhibited the same pattern in all
three cell lines (fig. S28, A and B, and table S8).
One prominent pattern shared by the three
cell lines was an enrichment for genes and
pathways indicative of progression toward
cell-cycle arrest (figs. S28C and S29, A and B).
DNA content staining and flow cytometry
confirmed that HDAC inhibition resulted in
the accumulation of cells in the G,/M phase
of the cell cycle (34) (fig. S29, C and D).

The shared response to HDAC inhibition
included not only cell-cycle arrest but also the
altered expression of genes involved in cellular
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metabolism (fig. S28C). Histone acetyltrans-
ferases and deacetylases regulate chromatin
accessibility and transcription factor activity
through the addition or removal of charged
acetyl groups (35-37). Acetate, the product
of HDAC class I-, II-, and IV-mediated his-
tone deacetylation and a precursor to acetyl-
coenzyme A (acetyl-CoA), is required for histone
acetylation but also has important roles in
metabolic homeostasis (23, 38, 39). Inhibi-
tion of nuclear deacetylation limits recycling
of chromatin-bound acetyl groups for both
catabolic and anabolic processes (39). Accord-
ingly, we observed that HDAC inhibition led
to sequestration of acetate in the form of
markedly increased acetylated lysine levels af-
ter exposure to a 10 uM dose of the HDAC in-
hibitors pracinostat and abexinostat (fig. S30).

Upon further inspection of pseudodose-
dependent genes, we observed that enzymes
critical for cytoplasmic acetyl-CoA synthesis
from either citrate (ACLY) or acetate (ACSS2)
were up-regulated (Fig. 5A). Genes involved in
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cytoplasmic citrate homeostasis (GLS, IDHI,
and ACO1), citrate cellular import (SLC13A3),
and mitochondrial citrate production and ex-
port (CS, SLC25A1) were also up-regulated.
Up-regulation of SIRT2, which deacetylates tu-
bulin, was also observed in response to HDAC
inhibition.

Together with increases in chromatin-bound
acetate, these transcriptional responses sug-
gest a metabolically consequential depletion of
cellular acetyl-CoA reserves in HDAC-inhibited
cells (Fig. 5B). To validate this further, we
sought to shift the distribution of cells along
the HDAC inhibitor trajectory by modulating
cellular acetyl-CoA levels. We treated A549 and
MCEF7 cells with pracinostat in the presence
and absence of acetyl-CoA precursors (acetate,
pyruvate, or citrate) or inhibitors of enzymes
(ACLY, ACSS2, or PDH) involved in replen-
ishing acetyl-CoA pools. After treatment, cells
were harvested and processed using sci-Plex
and trajectories constructed for each cell line
(figs. S31 and S32). In both A549 and MCF7
cells, acetate, pyruvate, and citrate supplemen-
tation was capable of blocking pracinostat-
treated cells from reaching the end of the
HDAC inhibitor trajectory (fig. S31, F, J, H,
and L). In MCF?7 cells, both ACLY and ACSS2
inhibition shifted cells farther along the HDAC
inhibitor trajectory, although no such shift
was observed in A549 (fig. S31, G, K, I, and
M). Taken together, these results suggest that
a major feature of the response of cells to
HDAC inhibitors, and possibly their associated
toxicity, is the induction of an acetyl-CoA-
deprived state.

Discussion

Here, we present sci-Plex, a massively multiplex
platform for single-cell transcriptomics. sci-Plex
uses chemical fixation to cost-effectively and
irreversibly label nuclei with short, unmodified
ssDNA oligos. In the proof-of-concept exper-
iment described here, we applied sci-Plex to
quantify the dose-dependent responses of can-
cer cells to 188 compounds through an assay
that is both high content (global transcription)
and high resolution (single cell). By profiling
several distinct cancer cell lines, we distin-
guished between shared and cell-line-specific
molecular responses to each compound.
sci-Plex offers some distinctive advantages
over conventional HTS: it can distinguish a
compound’s distinct effects on cellular subsets
(including complex in vitro systems such as
cellular reprogramming, organoids, and syn-
thetic embryos); it can unmask heterogeneity
in cellular response to a perturbation; and
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it can measure how drugs shift the relative
proportions of transcriptionally distinct sub-
sets of cells. Highlighting these features, our
study provides insight into the mechanism of
action of HDAC inhibitors. Specifically, we
find that the main transcriptional responses to
HDAC inhibitors involve cell-cycle arrest and
marked shifts in genes related to acetyl-CoA
metabolism. For some HDAC inhibitors, we
observed clear heterogeneity in responses
observed at the single-cell level. Although
HDAC inhibition is conventionally thought
to act through mechanisms directly involving
chromatin regulation, our data support an
alternative model, albeit not a mutually exclu-
sive one, in which HDAC inhibitors impair
growth and proliferation by interfering with
a cancer cell’s ability to draw acetate from
chromatin (22, 23, 39). As such, variation in
cells’ acetate reservoirs is a potential expla-
nation for their heterogeneous responses to
HDAC inhibitors.

As the cost of single-cell sequencing con-
tinues to fall, the opportunities for leverag-
ing sci-Plex for basic and applied goals in
biomedicine may be substantial. The proof-of-
concept experiments described here, consist-
ing of nearly 5000 independent treatments
with transcriptional profiling of >100 single
cells per treatment, can potentially be scaled
toward a comprehensive, high-resolution atlas
of cellular responses to pharmacologic pertur-
bations (e.g., hundreds of cell lines or genetic
backgrounds, thousands of compounds, mul-
tichannel single-cell profiling, etc.). The ease
and low cost of oligo hashing, coupled with
the flexibility and exponential scalability of
single-cell combinatorial indexing, would facil-
itate this goal.
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