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Spatial patterns of gene expression manifest at scales ranging from local (e.g., cell-cell interactions)
to global (e.g., body axis patterning). However, current spatial transcriptomics methods either
average local contexts or are restricted to limited fields of view. Here, we introduce sci-Space,
which retains single-cell resolution while resolving spatial heterogeneity at larger scales. Applying
sci-Space to developing mouse embryos, we captured approximate spatial coordinates and
whole transcriptomes of about 120,000 nuclei. We identify thousands of genes exhibiting
anatomically patterned expression, leverage spatial information to annotate cellular subtypes,
show that cell types vary substantially in their extent of spatial patterning, and reveal correlations
between pseudotime and the migratory patterns of differentiating neurons. Looking forward,
we anticipate that sci-Space will facilitate the construction of spatially resolved single-cell atlases
of mammalian development.

S
ingle-cell methods have the potential
to transform our understanding of organ-
ismal development. In diverse models
of embryogenesis, we and others have
performed “whole-organism” profiling

of gene expression or chromatin accessibility
at single-cell resolution (1–7), yielding a richer
view of the emergence and trajectories of cell
types than was previously available or possible
(8, 9).
Cells’ spatial organization plays a central

role in normal development and homeosta-
sis, as well as in pathophysiology. However, a
key limitation of most single-cell molecular
profiling methods is that they operate on dis-
aggregated cells or nuclei. Although in situ
methods can measure the expression of many
or all genes while retaining spatial informa-
tion (10), these methods also have limitations
(fig. S1). Some, including the original “spatial
transcriptomics” (11) and Slide-seq (12) meth-
ods, barcode and then count mRNAs derived
frompositions across patterned arrays. Although
these methods can be implemented at a range

of spatial scales, the boundaries of spots have
no natural correspondence to the boundaries
of cells. Therefore, they yield aggregate profiles
of small regions encompassing multiple cells
and/or portions of cells rather than truly re-
solving individual cells. Other methods, includ-
ing MERFISH (13), seqFISH (14), and FISSEQ
(15), rely on in situ hybridization or sequencing
to measure the expression of many genes while
retaining single-cell (or even subcellular) reso-
lution within each field of view. However, such
methods are typically limited by long image
acquisition times and complex instrumenta-
tion requirements. In sum, existing techniques
necessitate tradeoffs such that assaying the
whole transcriptomes of individual cells over
large territories remains impractical.

Spatial labeling of nuclei
with hashing oligonucleotide

Previously, we developed sci-Plex, a method for
labeling or “hashing” nuclei using unmodified
DNA oligos before single-cell RNA sequenc-
ing with combinatorial indexing (sci-RNA-seq)
(16). To leverage this workflow to capture spa-
tial information, we spatially arrayed unique
combinations of hashing oligos, and then trans-
ferred these oligos to nuclei within a tissue slice
by diffusion (17). These hashing oligos, recovered
in association with sci-RNA-seq profiles, capture
each cell’s approximate tissue coordinates upon
sequencing.
As a proof of concept of this “sci-Space” ap-

proach, hashing oligos were spotted onto glass
slides coated with dried agarose. These grids
contained 7056 uniquely barcoded spots span-
ning a 18 mm by 18 mm area (mean radius of
73.2 ± 14.1 mm; mean spot-to-spot center dis-
tance of 222 ± 7.5 mm; fig. S2). About 5% of
spots, constituting an identifiable pattern,
were also loaded with SYBR green fluorescent
dye. After transferring the oligos to the tissue,
the grid could be registered with an image of

the tissue using these concurrently imaged
fluorescent fiduciaries (figs. S2 and S3). After
optimization of hashing oligo concentrations
and dissociation protocols (figs. S4 and S5),
our protocol comprised four steps: (i) fresh-
frozen tissue is sectioned; (ii) sectioned tissue
is permeabilized with a solution containing a
slide-specific oligo and physically juxtaposed
to a glass slide bearing the spatially gridded
hashing oligos; (iii) during oligo transfer, the
assembly is imaged; and (iv) nuclei from the
tissue on the slide are extracted, fixed, and
subjected to sci-RNA-seq (Fig. 1A and figs. S6
and S7).

Spatially resolved single-cell sequencing
of the mouse embryo

We applied sci-Space to profile 14 sagittal sec-
tions derived from two embryonic day 14 (E14.0)
mouse embryos (C57BL/6N). After sequenc-
ing, quality filtering (18), and assignment of
each cell to a slide (on the basis of its slide-
specific hashing oligo), our dataset comprised
121,909 spatially resolved single-cell transcrip-
tomes [mean 2514 unique molecular identi-
fiers (UMIs) andmean 1231 genes detected per
cell], without apparent batch effects between
slides or embryos (figs. S8 and S9). This corre-
sponds to capture of 164 nuclei/mm2 of tissue
on average, or sampling of 2.2% of the esti-
mated nuclei present (fig. S10). Rather than
annotating cell types ab initio, we co-embedded
(19, 20) these data with a published, nonspatial
sci-RNA-seq mouse organogenesis cell atlas
dataset spanning E9.5 to E13.5 (1) and cells
from a developing mouse brain atlas (DMBA)
spanning E13.5 to E14.5 (21). Reassuringly,
these E14.0 data integrated well with both
datasets (Figs. 1B and fig. S11). Draft cell type
annotations, inferred by nearest-neighbor label
transfer, were highly concordant with those
recovered by Garnett (22), a semisupervised
annotation algorithm (fig. S11). These anno-
tations were then refined by manual inspec-
tion of differentially expressed genes (Fig. 1C
and data file S1).
Images of sectioned embryos and sequenc-

ing data were co-registered using SYBR way-
points (23, 24) (Fig. 2A and figs. S12 and S13).
Eachnucleuswasmapped to thepositionmatch-
ing its highest combination of spot and sector
oligos within the imaged section. For ~9% of
nuclei, the top assignment was not located
near any other nuclei of the same cell type; for
such “outliers,” alternative mappings were con-
sidered. Altogether, nuclei were well localized
(fig. S8, C to F) to one of 15,102 spatial positions
across 14 sections; on average, each spatial
position was assigned 8.1 nuclei (10.5 SD) (fig.
S14). To quantify the anatomical distribution
of cell type annotations, each section was seg-
mented by organ (Fig. 2B and fig. S15), aided
by immunostaining of adjacent sections (25)
(fig. S16). Neurons mapped largely within the

RESEARCH

Srivatsan et al., Science 373, 111–117 (2021) 2 July 2021 1 of 7

1Department of Genome Sciences, University of
Washington, Seattle, WA, USA. 2Department of
Bioengineering. University of Washington, Seattle, WA,
USA. 3Institute for Stem Cell and Regenerative Medicine,
Seattle, WA, USA. 4Molecular and Cellular Biology
Program, University of Washington, Seattle, WA, USA.
5Foresite Labs, Boston, MA, USA. 6Translational Research
Program, Public Health Sciences, Fred Hutchinson Cancer
Research Center, Seattle, WA, USA. 7Institute of Human
Genetics, University of Lübeck, Lübeck, Germany. 8Human
Molecular Genomics Group, Max Planck Institute for
Molecular Genetics, Berlin, Germany. 9Division of Biology
and Biological Engineering, California Institute of
Technology, Pasadena, CA, USA. 10Allen Discovery Center
for Cell Lineage Tracing, Seattle, WA, USA. 11Howard
Hughes Medical Institute, University of Washington,
Seattle, WA, USA. 12Brotman Baty Institute for Precision
Medicine, Seattle, WA, USA. 13Department of Laboratory
Medicine and Pathology, Seattle, WA, USA.
*Corresponding author. Email: shendure@uw.edu (J.S.);
ksteve@uw.edu (K.R.S.); coletrap@uw.edu (C.T.)
†These authors contributed equally to this work.

D
ow

nloaded from
 https://w

w
w

.science.org at Fred H
utchinson C

ancer C
enter on January 02, 2026



spinal cord and brain outlined by cells of the
developing meninges, cardiomyocytes within
the heart, and white blood cells throughout
the organism (Fig. 2, C andD, and figs. S18 and
S17). Analysis with Giotto (26), an unsupervised
tool for segmenting spatial transcriptomic im-
ages into tissue “domains” of similar cell type
composition, revealed 22 domains shared across
sci-Space slides. In addition to detecting boun-
daries between major organs, Giotto was able
to automatically recognize more complex do-
mains with distributions extending through-
out the embryo (e.g., mesenchymal tissue and
cartilage) (fig. S19).

Finally, wherever cells are captured, sci-Space
data enable the visualization of any gene in
the transcriptome akin to an in situ hybrid-
ization, albeit at lower spatial resolution. For
example, a sci-Space “digital in situ” of the do-
pamine transporter Slc6a3 highlights a cluster
of dopaminergic neurons at the midbrain-
hindbrain boundary, consistent with stage-
and section-matched whole-mount in situ data
(27) (Fig. 2E and fig. S20). Unlike conventional
in situ data, sci-Space data also resolve gene
expression by cell type. For example, in the heart,
both cardiomyocytes and endothelial cells
express the growth factor Fgf1, whereas only

cardiomyocytes express the growth factor re-
ceptors Fgfr1, Fgfr2, and Fgfr3 (Fig. 2F).

Contrasting sci-Space and spatial
transcriptome capture (STC) methods

A key distinction between sci-Space and STC
methods (fig. S1, left) is that because STCmeth-
ods capture transcripts from lysed tissue sec-
tions (11, 12), each spot can include RNA from
multiple cells and/or portions of cells. As such,
STC methods are limited in their ability to
resolve gene expression variation within indi-
vidual cells or cell types. To quantify the conse-
quencesof this limitation,we spatially aggregated
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Fig. 1. sci-Space recovers single-cell transcriptomes while recording
spatial coordinates. (A) Arrayed single-stranded oligos were transferred onto
permeabilized nuclei in fresh-frozen tissue sections and imaged. Cells from each
slide were also labeled with a section-identifying barcode so that multiple sections

could be pooled before sci-RNA-seq. (B) Joint embedding of E14.0 single-cell
transcriptomes from this study and published data spanning E9.5 to E13.5 (1). Major
trajectories are labeled. (C) UMAP embedding of 121,909 cells from sectioned E14.0
mouse embryos. Cell types are denoted by color and number in legend.
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transcriptomes from sci-Space nuclei, effec-
tively creating a “mock-STC'' dataset. Cell types
and clusters readily discernible in the single-
cell data were challenging to resolve in the
mock-STC data (fig. S21, A to C). One approach
to ameliorating this limitation involves map-
ping cells profiled by nonspatial single-cell
RNA-seq onto a STC “scaffold”, thereby imput-
ing cellular locations within a tissue (20, 28).
To assess the viability of this approach, we
applied such imputation to mock STC data
and compared it with the single-nucleus data
used to derive it (fig. S21, D and E). The mean
distance between a nucleus’ imputed posi-
tion and its measured position was 11.6 spots
(~2.5 mm), a measure that varied by cell type
(fig. S21F). Thus, despite sampling fewer tran-
scripts than STC methods (fig. S21, G to I), sci-
Space’s single-cell resolution—that is, its ability
to unambiguously ascertain sets of transcripts
expressed in the same cell—represents a key
advantage over STC methods.
Analogously, we posited that sci-Space data

could serve as a scaffold for the imputation

of locations of cells profiled by nonspatial
single-cell RNA-seq but with the advantage
of matching single-cell transcriptomes. To
test this, we aligned neurons from sci-Space
and the DMBA. Transfer of dissection-based
DMBA anatomic annotations were consistent
with sci-Space coordinates (fig. S23). Further-
more, this alignment mapped hundreds of
DMBA transcriptional clusters to specific
positions, many spatially restricted (fig. S23).
For example, of 193 transcriptomic clusters
from La Manno et al. (21) that mapped to
slides 13 and 14, 94 and 115 clusters displayed
statistically significant focal enrichment, re-
spectively [false discovery rate (FDR) < 0.01;
Getis-Ord Local G].

Spatial patterns of gene expression across
cell types

To systematically examine these data for spa-
tially patterned, cell-type–specific gene expres-
sion across the E14.0 embryo, we quantified
spatial autocorrelation, the degree to which
the cells expressing a given gene are spatially

proximate. Testing each annotated cell type
separately, we identified hundreds to thou-
sands of genes exhibiting positive spatial auto-
correlation per cell type (see the supplementary
materials, file S2; Moran’s test, FDR < 0.001).
Among the cell types analyzed, connective
tissue progenitors and neurons had themost
spatially autocorrelated genes detected (Fig. 3A;
mean 12,150 ± 2270 and 8623 ± 3846 genes per
slide, respectively).
One explanation for such spatial autocor-

relation of genes within a cell type would be
the presence of spatially restricted, unanno-
tated cell subtypes. For example, upon subclus-
tering of connective tissue progenitors, we can
indeed find spatially restricted cell subtypes
(fig. S24, A and B), such that the genes defin-
ing these subtypes are expected to be spatially
autocorrelated. Alternatively, a gene’s spatial
pattern of expression could arise from spa-
tially restricted gene expression contributed by
multiple cell subtypes. To distinguish between
these scenarios, we calculated each gene’s spa-
tial autocorrelation (spatial Moran’s I) and
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Fig. 2. sci-Space captures spatially and cell-type–resolved gene
expression across the embryo. (A) Co-registered 4′,6-diamidino-2-phenyl-
indole (DAPI)–stained section image and oligo array superimposed. SYBR
waypoints are highlighted in green. (B) Anatomical regions of slide 1
(left) and an adjacent immunostained serial section aligned to slide 1 (right).
(C) Highlighted cell types mapping to a single slide. (D) UMAP embedding

colored by anatomical regions. (E) Gene expression of dopamine transporter
Slc6a3 from sci-Space data (left) and published (27) section/stage
matched in situ (right). (F) Smoothed percentage of gene expression for
Fgf1, Fgfr1, Fgfr2, and Fgfr3 in cardiomyocytes (top) or endothelial cells (bottom).
Color is scaled to maximum percentage within each gene. Scale bars in (A) to
(C), 0.5 mm.
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compared this value with its autocorrelation
in UMAP space (UMAPMoran’s I), a proxy for
gene expression driven by a single-cell sub-
type. Across all genes, the two measures were
reasonably well correlated (Pearson’s rho 0.49,
P < 2 × 10–16). However, a subset of genes,
particularly in neurons, displayed higher spa-
tial autocorrelation in the tissue context than
in UMAP space (Fig. 3B and fig. S25, A and B).
For example, Hox genes, a class of homeotic
transcription factors that specify the body
plan, featured prominently in this subset, con-
sistent with spatial patterning that could not
be explained solely by spatial restriction of
a single-cell subtype (Fig. 3, B and C, and fig.
S25, A to D). Expression of HoxA cluster genes
paralleled the establishment of the spinal
cord’s anterior-posterior axis (29) (Fig. 3D
and fig. S25), with no cell subtype restriction

observed across datasets (30) or modalities
(fig. S26, A to C).
Additional non-Hox genes also displayed

excess spatial autocorrelation (Fig. 3, E and F,
and fig. S26D). One such gene, Cyp26b1, en-
codes an enzyme that metabolizes the devel-
opmental morphogen retinoic acid. The spatial
distribution of morphogens such as retinoic
acid can play a critical role in tissue patterning
(29). sci-Space data localized the focal expres-
sion of Cyp26b1 to the brainstem with expres-
sion observed in multiple neuronal subclusters
(figs. S25, A and B, and S26, A and B). This re-
sult was validated by RNA fluorescence in situ
hybridization (FISH) for Cyp26b1 and neuronal
subtype–specific genes (Fig. 3G and fig. S26C).
Together, these data identify Cyp26b1 expres-
sion both in progenitors (radial glia) lining the
hindbrain and in their progeny, spatially adja-

cent postmitotic neurons, suggesting that the
expression of Cyp26b1 is retained as these
cells differentiate. This example illustrates
how sci-Space can distinguish between spatial
patterns of gene expression driven by a single-
cell type from those present across multiple
cell types.

Quantifying the explanatory power
of spatial position

To investigate how each cell type’s transcrip-
tome varied globally across the embryo, we
calculated the angular distance between the
transcriptomes of pairs of cells of the same
type separated by varying distances. For many
cell types, as the physical distance between cells
increased, so did the angular distance between
their transcriptomes. However, this trend varied
considerably, e.g., itwasparticularlypronounced
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Fig. 3. Spatially restricted gene expression in developing neurons. (A) Number
of spatially significant (Moran’s test, FDR < 0.001) autocorrelated genes within
each slide (color) and cell type. Only cell types with >50 cells per slide were
included. (B) Log-log (log10) plot of autocorrelation in UMAP embedding
(x-axis) versus autocorrelation in spatial coordinates (y-axis) for each gene
computed on excitatory neurons from slide 1. Moran’s I values close to 1 indicate
perfect spatial correlation, and a value of 0 indicates a random spatial
distribution. Hox genes are highlighted. (C) log10-scale boxplot of Moran’s I
statistic for Hox genes displayed in (B) versus all other expression level-matched

genes (P < 0.001, two-sided t test). (D) Gene expression of HoxA cluster in
slide 1. (E) Similar to (B), log-log (log10) plot of autocorrelation in UMAP
embedding (x-axis) versus autocorrelation in spatial coordinates (y-axis) for each
gene with genes in different regimes highlighted for slide 1. (F) Expression
patterns across slide 1 for other spatially restricted genes that are not restricted
to a single neuron subcluster. (G) Comparison of sci-Space (slide 14)– and RNA
FISH (RNAscope)–detected Cyp26b1 patterns of expression (gray) and
coexpression with markers (colors as indicated in key) for neuronal and
supportive cell types.
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in radial glia, neurons, and endothelial cells
(Fig. 4A and fig. S27, A and B).
To quantify the contribution of spatial con-

text to variation in gene expression across in-
dividual cells,wedevelopeda statistical approach.
Briefly, we first partitioned cells into groups on
the basis of cell type and spatial location. Then,
we computed the angular distance between
each cell and the average expression profile
for cells of that same type in the same spatial
bin. After estimating and subtracting the
technical variance attributable to data spar-
sity, we quantified how much of the remain-
ing biological variance was due to each cell’s
type and/or spatial position. To validate this
approach, we decomposed the variance attri-
buted to lineage in the developing Caeno-
rhabditis elegans embryo, where there is a
relationship between two cells’ lineage rela-
tionship and their observed gene expression
variance (2). We found that our variance de-
composition approach followed the law of
total variance (fig. S28C) and, in agreement
with Packer et al. (2), showed that variance at-
tributable to a cell’s lineage relationship peaked
around generation 7 (fig. S28D).
Applying this variance decomposition ap-

proach to the sci-Space data, we estimated that
sparse UMI sampling accounted for 95.1% of
the observed variance in global gene expres-
sion across cells and in subsequent analyses,
we focused on the remaining 4.9% “nonsam-
pling” variance. Of this nonsampling variance
in global gene expression, cell type alone ac-
counted for 19%. However, a joint model that
included both cell type and spatial position
accounted for 50% (fig. S29). The implication,
that spatial information explains as much, if

not more, of nonsampling gene expression
variance asmajor cell type, was supported by
the recovery of cell type and spatial gene mod-
ules of similar size and composition (fig. S30).
However, some cell types’ transcriptomes ap-
peared more sensitive to spatial position than
others (Fig. 4B). For example, chondrocytes
were influenced by positionwithin the embryo,
reflecting the ongoing development of various
connective tissue lineages at E14.0, and ex-
plained at least in part by subclusters that ap-
pear to correspond to digit condensates and
craniofacial mesenchyme (Fig. 4C and fig. S31).
Other such cell types included neurons and
their precursors, the radial glia.

Pseudotemporal sci-Space trajectories reflect
neuronal migration dynamics

To explore how spatial context might relate to
gene expression heterogeneity in a develop-
ing cell lineage, we focused on radial glia and
neurons. In particular, we hypothesized that
we might be able to detect and localize the co-
ordinated processes of neuronal differentia-
tion andmigration (31). UMAP dimensionality
reduction of these cell types revealed the pres-
ence of three distinct trajectories originating
in radial glia and leading to neurons (Fig. 5A).
Gene expression dynamics along these three
branches were consistent with neuronal dif-
ferentiation, the up-regulation of cell cycle
genes followed by expression of genes involved
inmigration (fig. S32). Each branchwas strongly
enriched for subtype-specific marker gene
expression, Pou4f1+/Pax3+ tectal neurons, Isl1+/
Lhx6+ cortical interneurons, andEmx1+/Neurod6+

cortical pyramidal neurons, indicating that
the embedding captures their specification from

radial glia (Fig. 5B). We examined how these
trajectories were anatomically distributed by
segmenting the brain from each section using
the Allen Institute’s Anatomical Reference Brain
Atlas (http://atlas.brain-map.org/) as a guide.
Cells from each trajectory overwhelmingly
occupied a distinct brain region (Fig. 5C). To
quantify progression through differentiation,
we calculated pseudotime for each branch using
radial glia as the root (Fig. 5D and fig. S32).
Intersecting pseudotime and spatial informa-
tion, we observed that cells early in differen-
tiation clustered around the ventricles in the
forebrain and developing midbrain, whereas
those farther away exhibited a more differen-
tiated transcriptome (Fig. 5E and fig. S33).
The spatial gradients of cellular maturity

estimated with sci-Space data are consistent
withwell-documented coordination of cellular
differentiation and neuronal migration. In the
pallium, immature neurons migrate and dif-
ferentiate radially outward, leading to the
inside-out development of the cortical layers
(31). In the subpallium, cortical interneurons
born in the ganglionic eminences migrate tan-
gentially to populate the developing cortex
and olfactory bulb (32). Our data also identify
a third major pattern of migration in which
precursors emanate from the dorsal aspect of
the ventricular zone in the developing mid-
brain. Thesemidbrainneurons seem tomigrate
both radially, toward the pial surface, and tan-
gentially, parallel to the pial surface, to popu-
late this region (Fig. 5E, slides 8, 13, and 14, and
fig. S33, slides 4 and 7). Although radial and
tangential migration are generally discussed
as being mutually exclusive phenomena, our
data, consistent with some prior work (33, 34),
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Fig. 4. Quantifying the variance in gene
expression attributable to spatial
position. (A) Pairwise angular distance
(radians) between global transcriptomes
of cells of the indicated cell types.
Cell pairs are grouped by distance
on the physical array (millimeters)
(**P < 0.001, ***P < 0.0001, Wald linear
regression test). (B) Proportion of
nontechnical variance explained within
cells of each type by spatial position.
Point size indicates number of cells
and point color indicates the slide
of origin. (C) Recovered positions of
chondrocytes from slides 6, 11, and
14 colored by subcluster. Arrows indicate
focal concentrations of craniofacial
mesenchyme (green) and digit condensate
subclusters (red). Insets to the right
of each plot show parts of each image
with similarly positioned arrows. White text
of each inset labels the anatomic structure
displayed. Scale bars in (C), 0.25 mm.
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suggest otherwise in the developing midbrain.
Furthermore, these cells share a common tran-
scriptional program with differentiating and
migrating neurons in the pallium and subpal-
lium (Fig. 5F and data file S3).

Discussion

sci-Space is a method for spatial transcriptom-
ics that retains single-cell resolution while cap-
turing spatial information at a scale specified
by a patterned array of cell hashing oligos.
As a proof of concept, we applied sci-Space to
retrieve the approximate spatial coordinates
of transcriptionally profiled cells across whole-
mount sections from E14.0 mouse embryos.
The sci-Space data are readily integrated with
nonspatial single-cell RNA-seq data collected
from mouse embryos at adjacent time points
(1, 21), enabling rapid annotation of diverse cell

types and visualization of cell-type–specific,
spatially patterned gene expression, i.e., digital
in situs. We identify examples, some expected
and others unexpected, of genes expressed in
an anatomically patterned manner within cells
of a given type.
The spatial resolution of sci-Space is pres-

ently limited by the patterned array of hashing
oligos, here to ~200 mm. Although increasing
spot density and decreasing spot size are a
straightforward path to increasing resolution,
sci-Space is unlikely to detect effects arising
from interactions between adjacent cells. This
is limited by recovery of only a fraction of cells
from each serial section such that we obtain a
“survey” rather than achieving densemeasure-
ments. Nonetheless, sci-Space fills a need not
addressed by other technologies. Like other
STC methods (e.g., Slide-seq), sci-Space can be

applied routinely and efficiently to large re-
gions, e.g., whole-embryo serial sections. How-
ever, unlike these methods, sci-Space recovers
single-cell transcriptomes. It can therefore cap-
ture patterns of spatial gene regulation private
to specific cell types and estimate the contribu-
tion of each cell type to the expression of mor-
phogens and other signaling molecules, both
within andacross anatomical regions.Moreover,
sci-Space data can serve as a spatial “scaffold” for
conventional, nonspatial single-cell RNA-seq
atlases, whichmay bemore challenging tomap
onto tissues profiled by spatial profiling meth-
ods that lack single-cell resolution.
Finally, using these spatially resolved single-

cell data, we developed a statistical approach
to identify cell types in the developing embryo
that exhibit spatially regulated gene expres-
sion. Closer analysis of radial glia and neurons
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Fig. 5. Pseudotemporal spatial
trajectories capture migratory
patterns in the developing
brain. (A to D) UMAP embedding
displaying the neural trajectories
colored by cell type (A), specific
gene expression (B), cortical
region (C), or pseudotime (D).
(E) Neurons and radial glia in the
cortex are colored by pseudotime
or are otherwise colored gray.
Insets of caudal (top) and rostral
(bottom) brain outlines are
shown to the right of each slide.
M, midbrain; P, pallium; SP,
subpallium; V, ventricle).
(F) Scaled and centered gene
expression for genes (rows)
significantly varying over pseudo-
time in all three trajectories.
Enriched Gene Ontology Biological
Processes terms (GO BP) are
displayed next to clustered genes.
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revealed gradients of developmental maturity
in different regions of the brain indicative of
known and new patterns of neuronal migra-
tion. Together with data from complementary
technologies, we anticipate that the further ap-
plication of sci-Space to serial sections span-
ning entire embryos from many time points
will facilitate the construction of a set of high-
ly time- and space-resolved four-dimensional
atlases of gene expression across mammalian
development.
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