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ABSTRACT

Spatial genomics technologies include imaging- and sequencing-based methods. Sequencing-based spatial
methods typically require surfaces coated with coordinate-associated DNA barcodes, but the physical
registration of these barcodes to spatial coordinates is challenging, necessitating either high density printing of
oligonucleotides or in situ sequencing/probing of randomly deposited, DNA-barcode-bearing beads. As a
consequence, the surface areas available to sequencing-based spatial genomic methods are constrained by
the time, labor, cost and instrumentation required to either print or decode a coordinate-tagged surface. To
address this challenge, we developed SCOPE (Spatial reConstruction via Oligonucleotide Proximity Encoding),
an optics-free, DNA microscopy-inspired method. With SCOPE, the relative positions of DNA-barcoded beads
within a 2D shape, 2D image or 3D volume are inferred from the ex situ sequencing of chimeric molecules
formed from diffusing “sender” and tethered “receiver” oligonucleotides. To demonstrate the potential of this
approach, we applied SCOPE to reconstruct 2D shapes, 2D images or 3D volumes defined by 10106 x
20-100 um DNA barcoded beads, including an asymmetric “swoosh” resembling the Nike logo (44 mm?), a
“color” Snellen eye chart (704 mm?) and the surface topology of 3D molds of a teddy bear, star, butterfly or
block letter (75-100 mm?®). Each of the resulting “DNA barcode proximity graphs” was computationally
reconstructed in an automated fashion, across fields of view and at resolutions that were determined by
sequencing depth, bead size and diffusion kinetics, rather than by microarray or microscope instrument time.
Because the ground truth shapes are known, these datasets may be particularly useful for the further
development of computational algorithms by this nascent field.
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INTRODUCTION

In the natural and engineered worlds, conventional paradigms for determining spatial relationships include
optics (e.g. microscopy), acoustics (e.g. echolocation) and haptics (e.g. touch). However, particularly at
nanoscopic and microscopic scales, one can also imagine how complex polymers—and DNA in particular—
might be leveraged to encode and decode spatial information. For such a goal, DNA has a number of attractive
properties, including: its high information density; simple design principles; biochemical stability; the breadth of
primitive operations that can be accessed enzymatically or directly encoded (7); and our contemporary access
to low-cost technologies for synthesizing and sequencing nucleic acids of arbitrary sequence composition.
Many of these same properties underlie DNA’'s promise as a digital data storage medium, whether in vitro (e.g.
using A's, G’s, C’s and T’s to encode written symbols or visual pixels (2, 3)) or in vivo (e.g. using prime
editing-mediated short insertions to encode ordered molecular signaling or cell lineage histories (4, 5)).

DNA-based molecular barcoding (aka tagging or multiplexing) (6) is at the core of many modern genomic
methods, including: (i) unique molecular identifiers (UMI), with which RNA molecules are tagged; (ii) massively
parallel reporter assays (MPRAs), in which regulatory elements are tagged; (iii) pooled genetic screens, in
which perturbations, variants or lineages are tagged; (iv) single cell combinatorial indexing, in which cells are
tagged; (v) proximity ligation assays, in which proteins or nucleic acids are tagged; (vi) and spatial genomics, in
which hybridization probes or spatial coordinates are tagged. In each of these methods, the barcode
sequences themselves are usually arbitrary, while for some further applications (e.g. DNA origami (7), DNA
computing (8)), the barcode sequences and their interactions encode some pre-specified molecular logic.

Over the past decade, spatial genomic technologies have rapidly proliferated (9—77). The underlying methods
can be dichotomized into those that rely on in situ imaging (72, 13) vs. ex situ sequencing for primary data
collection, while ex situ sequencing methods can be further dichotomized into those that rely on
microdissection (74) vs. DNA-based molecular barcodes to identify the spatial coordinates associated with
each sequencing read, such as Slide-seq (15), HDST (716), and DBiT-seq (77). The main advantages of ex situ
sequencing methods include that they do not require a priori specification of molecular species of interest and
are less dependent on the cost and throughput limitations of optical instrumentation, while a further advantage
of the spatial barcoding subset of ex situ sequencing methods is that substantially greater resolution can be
achieved than with microdissection.

However, a major limitation of spatial barcoding methods is that they require the deposition and mapping of
specific barcoded oligonucleotides (oligos) to specific locations on a 2D surface. The mapping between
specific barcodes and specific physical coordinates is analogous to the mapping between the elements of a
CCD array and individual pixels in a digital camera. To fabricate and map arrays of DNA barcodes, oligos can
be: (i) pre-synthesized, arrayed, and deposited to specific locations, e.g. by a microarray printer (18, 19); (ii)
synthesized to specific locations in situ (20); or (iii) randomly distributed and decoded via in situ hybridization or
sequencing (15, 21, 22). However, these approaches are all time-, cost-, labor- or instrumentation-intensive,
which limits the physical dimensions of the arrays that are typically produced and used for these assays.

Around 2019 to 2020, several groups proposed that diffusion-driven interactions between closely located,
barcoded molecules could reveal spatial relationships, because physically proximate barcodes would interact
far more often than distant ones (23, 24). These ideas build on the logic of proximity ligation assays (25), which
use barcodes to detect pairwise molecular contacts, but extend it to reconstructing the relative positions of
entire populations of barcoded molecules based solely on interaction frequencies. Around the same time,
Weinstein & colleagues reduced similar ideas to practice with “DNA microscopy”, a method in which
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endogenous transcripts in fixed cells or tissues are tagged with UMIs, amplified, concatenated and sequenced
(26). As the probability of concatenation is a function of molecular proximity, the physical relationships among
the original transcripts could be inferred from sequencing data with cellular resolution. Since 2020 and
particularly in the last year, there has been growing interest in advancing the theoretical (27), computational
(28, 29) and experimental (30-33) frameworks underpinning this nascent class of methods.

Here we describe SCOPE (Spatial reConstruction via QOligonucleotide Proximity Encoding), a DNA
microscopy-inspired, optics-free method in which a 2D array or 3D volume of randomly deposited beads, each
bearing a unique DNA barcode, self-register their relative positions via proximity-dependent hybridization and
overlap extension of released “sender” and tethered “receiver’ oligos. Massively parallel sequencing of
sender-receiver chimeras results in a matrix of pairwise counts. Particularly for local communities, applying
dimensionality reduction algorithms widely used for scRNA-seq analysis, such as Uniform Manifold
Approximation and Projection (UMAP), to these data results in reasonable reconstructions of the relative
positions of beads underlying each shape, image or volume (34, 35). As a first proof-of-concept (2D _shape),
we apply SCOPE to reconstruct an asymmetric “swoosh” resembling the Nike logo. As a second
proof-of-concept (2D_image), we use oligos and a microarray printer to encode a multi-color image of the
Snellen eye chart for visual acuity, which we then reconstruct with SCOPE. As a third proof-of-concept (3D
volume), we apply SCOPE to reconstruct the surface topology of 3D molds of a teddy bear, star, butterfly and
block letter. Collectively, these demonstrations—spanning 10°-10° barcoded beads (20-100 pym)—showcase
the potential of DNA barcode proximity graphs for optics-free encoding and recovery of spatial information from
2D arrays or 3D volumes of beads. Given that the original 2D and 3D shapes or images are known, they may
also provide “gold standard” datasets for developing and benchmarking computational algorithms for
optics-free reconstruction.

RESULTS

Overview of SCOPE

We set out to develop a method for generating arbitrarily large surfaces or volumes of DNA barcodes whose
relative spatial positions could be determined without relying on optical or microjet instrumentation. The
strategy that we devised is based on a population of beads bearing unique DNA barcodes (i.e. wherein any
given bead bears many copies of a single DNA barcode, while different beads bear distinct DNA barcodes).
However, the oligos tethered to any given bead are functionally heterogeneous: they include both
“‘messengers”, designed to interact with messengers from nearby beads, and “decoders”, designed to capture
molecules of interest (Fig. 1A). Furthermore, each of these categories include further subsets termed
“senders”, designed for programmed release, and “receivers”, which remain tethered to a given bead (Fig. 1A).
After generating a 2D array or 3D volume of densely packed, DNA barcode-bearing beads,
sender-messengers are released to diffuse and hybridize to receiver-messengers that remain tethered to
proximally located beads (Fig. 1B). Massively parallel sequencing of sender-receiver messenger chimeras
results in a matrix of barcode-barcode interactions that is informative with respect to the proximity relationships
of beads, enabling computational reconstruction of their spatial arrangement (Fig. 1C). In parallel,
decoder-receivers can capture externally sourced, proximal nucleic acids, enabling spatial mapping of
additional molecular information onto the reconstructed map of bead positions (Fig. 1B-C).
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Figure 1: Overview of SCOPE (Spatial reConstruction via Oligonucleotide Proximity Encoding). (A) Schematic of
structure of oligos tethered to SCOPE beads. Hydrogel beads contain 5-Acrydite-tethered DNA oligos that are either
cleavable (“senders”) or non-cleavable (“receivers”) by USER enzyme, based on the presence or absence of dU in the 5’
stem. Both sender and receiver oligos contain the same barcode structure—4 subsequences each with 96 possible
identities—depicted by the 4 colored boxes. Both sender and receiver oligos are also functionalized with a 3’ cap of either
poly-dT (“decoders”, designed to capture poly-dA or poly-A tailed molecules) or a sequence encoding bead subtype
(“messengers”, designed to chimerize with messenger oligos from proximally located beads). (B) Schematic of 2D
SCOPE reaction. Top: Poly-dA hashing oligos are deposited onto a 2D array of SCOPE beads, bearing subsequences as
“colors” that encode an image of interest. Decoder oligos form chimeras with proximally located hashing oligos. Bottom:
Messenger oligos participate in diffusion-dependent, hybridization-mediated reactions with the messenger oligos of
proximally located beads in the 2D array, resulting in sender-receiver messenger chimeras. (C) Top: Spatial mapping of
hashing oligos. From sequencing of decoder-hashing oligo chimeras, we obtain a bead-by-molecule count matrix that is
informative with respect to which hashing oligos are proximate to each bead barcode. Bottom: Inference of the relative
positions of beads. From sequencing of messenger chimeras, we obtain a bead-by-bead count matrix that is informative
with respect to which bead barcodes are proximate to which other bead barcodes. (D) Out of 20 designed pairs of
complementary messenger sequences, the messenger oligos of each bead subtype are capped with 19 “antisense”
sequences and 1 “sense” sequence. For example, the messenger oligos of “A” subtype beads include the “A”
hybridization sequence in sense orientation, with the other 19 hybridization sequences in antisense orientation. (E)
lllustration of how 3 interaction counts between a proximally located pair of “A” and “T” subtype beads might originate from
different kinds of sender-reciever chimeras. (F) Only beads of different subtypes can contribute to the generation of
sender-receiver chimeras, which avoids “self-reactions” (i.e. senders chimerizing with receivers from the same bead) but
runs the risk of missing interactions between closely located beads of the same subtype.
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Generation of SCOPE beads

We chose to generate 20 um hydrogel beads as a solid substrate for SCOPE’s proof-of-concept, because
low-cost, accessible methods exist for the combinatorial DNA barcoding of such beads (36), as well as for
generating densely packed, large 2D arrays from them. Additionally, acrylamide hydrogels have a high internal
porosity which facilitates a higher density loading of oligos compared to non-porous substrates like glass or
polystyrene (22). We generated 20 um polyacrylamide hydrogel beads containing 100 uM of 5’-Acrydite oligo
using a flow-focusing microfluidics chip (Fig. S1A). To facilitate the enzymatic release of sender molecules,
half of the 5-Acrydite oligos were synthesized containing a deoxyuracil (dU) in the 5 stem (Fig. 1A).
Subsequent split-pool combinatorial DNA synthesis via programmed ligation generated a combinatorial space
of approximately 85 million possible barcodes comprising four positions with 96 possible sub-barcodes at each
(36). Sequencing of the synthesized barcodes confirmed that the process was highly efficient, with
sub-barcodes that were uniformly incorporated at each round (Fig. S1B-C). After barcoding, the bead-tethered
oligos were then 3’ capped with sequences enabling either decoder or messenger functionalities (Fig. 1A).
Through this process, the oligos decorating any single bead are homogenous in that they bear the same
barcode, but heterogeneous in that sender-decoders, receiver-decoders, sender-messengers, and
receiver-messengers, are all represented among them (Fig. 1A). Based on amplification and sequencing of
UMIs associated with barcodes enzymatically released from individual beads, we estimate that each bead
bears ~500,000 functionalized, barcoded oligos (mean: 491,811; IQR: 308,757-833,744; Fig. S1D). To
generate a planar array, SCOPE beads can be cast within an encasing hydrogel that polymerizes directly onto
a treated glass slide (Fig. S1E-F).

Messenger subtypes minimize the likelihood of self-self chimeras

SCOPE requires that sender and receiver messengers have some region of complementarity to hybridize to
one another. This scheme bears some risk of “self-self’ interactions, or chimeras between senders and
receiver messengers derived from the same bead, a challenge that also plagues other proximity-dependent
molecular methods such as Hi-C (37). To minimize this risk, we designed 20 distinct “cap” species for
messengers (Fig. 1A; Fig. S2A). After synthesizing DNA barcodes but prior to capping, beads were split into
20 subsets and loaded with a mixture of messenger cap species, such that DNA barcodes of each “bead
subtype” were capped with the antisense sequence of 19 cap designs, and the sense sequence of the
remaining cap design (Fig. 1D). As a consequence, the messengers associated with a given bead subtype
(each named for its sense-oriented cap) are capable of hybridizing with the messengers of all 19 other bead
subtypes, but not messengers of its own subtype (Fig. 1E). This scheme avoids “self-reactions” (i.e. senders
chimerizing with receivers derived from the same bead), but runs the risk of missing interactions between
neighboring beads of the same subtype (Fig. 1E-F). The choice of 20 bead subtypes was based on
simulations indicating diminishing returns beyond that point for minimizing the risk of the latter scenario (Fig.
S2B).

SCOPE reaction and massively parallel sequencing of sender-receiver chimeras

The SCOPE reaction involves subjecting the hydrogel-encased monolayer of polyacrylamide beads (Fig.
S1E-F) to a temperature-controlled, two-phase reaction mediated by a single reaction volume containing two
enzymes. In the first phase (37°C; 15’), sender-messengers are released from beads by the USER enzyme,
which cleaves at the dU present at the stem of a subset of DNA barcodes (Fig. 1A). Sender-messengers
diffuse away and hybridize to receiver-messengers tethered to adjacent beads (Fig. 1B,E-F). Because the
complementary regions reside in the functional cap (Fig. 1A), senders and receivers are expected to hybridize
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at their 3’ ends. In the second phase (55°C; 15’), reverse transcriptase, which can mediate both RNA- and
DNA-templated DNA polymerization (38), drives overlap extension and the generation of a chimeric molecule
that includes both the sender-messenger and receiver-messenger derived DNA barcodes (or, alternatively,
chimeras of decoders and proximate hashing oligos) (Fig. 1B). Sender-receiver chimeras are then PCR
amplified and subjected to massively parallel sequencing, which yields a sparse matrix of interaction counts
between a large number of DNA barcode-defined beads. As the SCOPE reaction is dependent on a
sender-messenger diffusing into the vicinity of a receiver-messenger, we expect the count frequencies between
any given pair of beads to be a function of their physical distance. Importantly, the asymmetry of primer binding
sites is such that for any given chimera, we are aware of which participating bead contributed the
sender-messenger vs. the receiver-messenger. The resulting matrix of count frequencies is therefore
asymmetric (Fig. 1C).

SCOPE results in count matrices that are spatially informative

With hydrogel beads, we can readily generate 2D arrays of beads with a mean diameter matching expectation
(20 pym) and 76% (s.d. 5%) coverage of the total area (Fig. 2A,C). As the upper bound on coverage is 91%
(perfectly uniform, hexagonally packed circles), our packing could potentially be improved by improving bead
size uniformity. With hexagonal packing, each bead has six immediate neighbors. Using image segmentation
and Delaunay triangulation on a representative image of a SCOPE bead array, we found the mode number of
immediate neighbors of a bead to be six (Fig. 2B,D).

We next sought to evaluate whether SCOPE-derived count matrices are spatially informative. For this, we
performed massively parallel sequencing of sender-receiver messenger chimeras recovered from SCOPE
reactions performed on either (i) a 2D array of beads; or (ii) beads in suspension. If performing SCOPE results
in proximity-dependent reactions between messenger-embedded barcodes derived from physically adjacent
beads, then the count matrices of these two reactions should vastly differ. Indeed, for beads in a 2D array, the
top 6 partners of a given bead accounted for 36.9% (s.d. 22.5%) of interactions, and the top 20 for 50.1% (s.d.
19.8%). However, for beads in suspension, the top 6 partners of a given bead accounted for only 4.3% (s.d.
12.7%) of interactions, and the top 20 for only 8.9% (s.d. 13.1%) (Fig. 2E-F). For the count matrix derived from
a 2D array, individual beads and their top interaction partners formed dense subgraphs akin to tightly knit social
networks (Fig. 2G). Taken together, these results confirm that the count matrices obtained by deep sequencing
of sender-receiver messenger chimeras derived from SCOPE reactions performed on 2D arrays are spatially
informative.

SCOPE interaction counts enable spatial reconstruction of fiduciary barcodes

Ranked per-bead interaction count proportions of 2D SCOPE arrays were well-modeled by an inverse square
function (Fig. 2H). We leveraged this to simulate a diffusive process for molecules derived from beads arrayed
in a hexagonal lattice, flexibly parametrized with empirical distributions of the “total sent” and “total received”
messengers of any given bead. We then trained a random forest regressor on simulated SCOPE data to
convert sparse bead-bead interaction counts into pairwise distances. Training data were generated by
simulating bead arrays with known ground-truth positions and modeled interaction profiles, with the simulation
re-parameterized for each experimental dataset to match its empirical distributions (Methods). Put another
way, the regressor is retrained on a dataset-specific simulation before use, to ensure that the count-distance
relationship it learns is appropriate for reconstructing the experimental data at hand.

The values in the resulting pairwise distance matrix are inversely related to the counts in the sparse interaction
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matrix, with “zeros”—pairs of beads with no detected interaction—assigned a single “long distance” value.
Although this approximation violates the triangle inequality at long distances, we posited that the dense local
interactions between beads and their closest ring of neighbors would be best resolved with algorithms such as
t-SNE or UMAP, which prioritize the preservation of local distances (34, 35). This was in fact the case, as
particularly for smaller arrays, both t-SNE and UMAP accurately reconstructed local communities from a
pairwise distance matrix generated by the aforedescribed procedure (Fig. S3A).

All rigid transformations (i.e. translations, rotations and inversions) are equivalent with respect to the expected
distribution of proximity-dependent interactions. As such, rigid transformations present a challenge when
comparing the output of a spatial reconstruction to a ground truth image. To evaluate whether fiducial beads
could anchor SCOPE reconstructions, we first performed simulations in which an arbitrary sub-barcode
(expected to occur in ~1/96 beads at random) was designated as the fiducial class within simulated bead
arrays, and their positions flagged in the ground truth image prior to export. After simulating SCOPE interaction
count matrices from these arrays, we applied our reconstruction pipeline to generate inferred bead
coordinates. Next, registration of the reconstructed vs. ground truth images was performed by iteratively
optimizing the parameters of a rigid transformation using gradient descent. At each iteration, an
implementation of the Jonker-Volgenant algorithm for unbalanced assignment was used to match points
between the fiducial sets, with the mean Euclidean error between matched pairs serving as the loss function.
With sufficient sampling depth (>200 UMIs per bead), reconstructions on a simulated array of 40,000 beads
achieved near-perfect alignment to ground truth images, with a mean Euclidean error of 2.19 bead diameters
(Fig. S3B-C).

Encouraged by these simulations, we sought to integrate fiducial alignment into the SCOPE workflow. For this,
we performed fluorescence in situ hybridization (FISH) on a 2D SCOPE array using probes targeting two
sub-barcodes (arbitrarily designated red [BC2 #33] and blue [BC4 #91], each expected at random in ~1/96
beads), followed by imaging (Fig. 2I). After running the SCOPE reaction and reconstructing bead coordinates
from sequencing-based proximity data, we identified red fiducial barcodes by sequence (Fig. 2J). These
reconstructed fiducial points were then aligned to their imaged counterparts by optimizing a linear
transformation using the same gradient descent point-matching procedure as used on simulations. To assess
accuracy, we computed mean Euclidean error on the aligned red fiducials themselves (Fig. 2K, left), and
separately on the held-out blue fiducials after applying the learned transformation (Fig. 2K, right). After
alignment, the mean error was 187 pixels (280 um) on the aligned red points and 179 pixels (269 um) on the
held-out blue points. Over the course of gradient descent, reductions in the mean error for red fiducials was
mirrored by similar reductions in the mean error of the held-out blue fiducials (Fig. 2L), supporting the
conclusion that the alignment procedure is working as intended.
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Figure 2: Bead arrays form local communities that can be computationally reconstructed from pairwise
interaction matrices. (A) Segmented mask of a representative image of a SCOPE bead array. (B) Delaunay triangulation
for segmented bead centroids. (C) Density plot of bead diameters from the segmented image. (D) Distribution of the
number of nearest neighbors observed for each bead. (E) Raw, unique interaction counts (y-axis) of a representative bead
with all its interacting neighbors ranked in descending order (x-axis). Left plot (blue) shows counts for a representative
bead from a SCOPE reaction performed on beads in suspension. Right plot (red) shows counts for a representative bead
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from a SCOPE reaction performed on beads in a 2D array. (F) Mean cumulative distribution function (CDF) of proportion
of all interaction counts explained by the top neighbors of a given bead, for SCOPE reactions performed on beads in
suspension (blue) or 2D array (red). Gray shadings show the range of CDFs for the 1000 randomly sampled beads from
which the mean CDFs were derived. (G) Network of interactions of two representative beads (red) from SCOPE reaction
performed in 2D array, with and among their top ten neighbors. (H) Proportion of read counts from interactions between
each bead of interest and their neighbors are overlaid with 100 simulation instances from the inverse square model. (I)
Region of SCOPE array imaged after staining for two specific “fiducial” sub-barcodes at position 2 (red) or position 4
(blue). Scale bar denotes 100 um. (J) SCOPE reconstruction highlighting the positions of sub-barcodes matching the
FISH probes used for imaging. (K) Point matching search performed between segmented imaging fiducials and SCOPE
reconstruction fiducials. Left: Purple-colored points (beads in SCOPE reconstruction bearing sub-barcode BC2-#33) were
scaled, translated, rotated and point-matched onto red-colored centroids from imaging. Right: The same transformation
was applied to green-colored points (beads in SCOPE reconstruction bearing sub-barcode BC4-#91) and these were
matched to blue-colored centroids from imaging. (L) Mean point matching error for both sub-barcodes during gradient
descent optimization. Rigid transformations were optimized according to the error for beads with sub-barcode BC2-#33
(red), with sub-barcode BC4-#91 positions (green) held out.

Computational approach to automated reconstruction of large SCOPE arrays

Although our reconstructions of simulated SCOPE data by “out-of-the-box” application of either UMAP or
t-SNE were highly accurate, we encountered various challenges upon either moving to experimental data or
upon attempting to scale reconstructions to much larger numbers of beads. To address these challenges and
enable reconstruction of large SCOPE arrays from real data, we developed an automated pipeline that
integrates data preprocessing, missing data imputation, manifold learning, and parameter optimization.

For data preprocessing, we sought to implement procedures that remove sources of noise specific to SCOPE
experiments. First, we remove barcode collisions—instances where a single DNA barcode spuriously
appeared in two spatially distinct neighborhoods—using Leiden clustering to identify such nodes as
mixed-community outliers (Fig. S4A). This approach showed high precision and recall in simulations and
removed the expected number of collisions in experimental datasets (Fig. S4B-E). Second, we prune spurious
edges—strong but biologically implausible interactions linking beads with non-overlapping
neighborhoods—using the MinlPath algorithm (28). This eliminates “short circuits” that otherwise distort
embeddings. Third, we compute the graph’s k-core—the largest subgraph such that all nodes have a minimum
degree of k. By setting k to 100, we retain only beads that are well connected and information-rich, to ensure
downstream inference is operating on robust subgraphs.

Next, we partition the remaining beads into manageable subsets for downstream analysis. To do this, we apply
Leiden clustering to the bead-bead interaction graph, followed by iterative merging of smaller clusters based
on shared graph edges. This procedure results in clusters composed of 300 to 2,500 beads. Within each
cluster, missing bead-bead interaction values are imputed with a single long-distance value, and all non-zero
interactions in the overall pairwise matrix are mapped to distances using our random forest regressor
parametrized on simulated data, as described above. This processed pairwise distance matrix is then used to
precompute a k-nearest neighbor (k-NN) distance matrix (k = 250). To initialize the approximate spatial
relationships among these clusters, we use the PAGA algorithm to generate a force-directed layout of the
clusters (39). Finally, the spatial positions of cluster centroids in the PAGA layout, together with 2D-gaussian
jitter, serve to initialize a UMAP reconstruction of the full array, with the precomputed k-NN bead-bead distance
matrix as input.
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Our initial tests showed that hyperparameter selection was important for success. Thus, we implement a grid
search over the “min_dist” and “repulsion_strength” UMAP hyperparameters in order to refine the solution. We
defined two metrics for hyperparameter selection, contiguity and uniformity. To evaluate contiguity, we generate
a binary tiled mask of the point cloud followed by segmentation, and only accept hyperparameter combinations
that yield a single connected object. To evaluate uniformity, we rank hyperparameter combinations based on
the extent to which they yield a uniform spacing of beads. The hyperparameter selection process is integrated
with the aforedescribed workflow, resulting in a fully automated pipeline for spatial reconstruction from SCOPE
data.

Accurate reconstruction of 2D shapes with SCOPE

After developing and validating our reconstruction algorithm based on simulated data, we sought to apply it to
experimentally generated datasets. As a first test, we generated a circularly shaped 2D array of SCOPE beads
(Fig. 3A; 7 mm diameter). As a circle is symmetric, we also introduced fiducials by spotting microliter droplets
of poly-dA ssDNA oligos, complementary to the poly-dT cap on decoder oligos (Fig. 1A), in a predetermined
pattern (12 o’clock, 3 o’clock, 6 o’clock). Following the SCOPE reaction, massively parallel sequencing of
chimeras, and application of the aforedescribed computational reconstruction pipeline, we obtained an
optics-free reconstruction of the inferred spatial positions of 62,884 beads. Remarkably, although our algorithm
does not specify or constrain the shape that the global reconstruction will take, we obtained a circle (Fig. 3B).
Furthermore, upon mapping the sequenced barcodes corresponding to fiducial-decoder chimeras onto the
reconstruction, we obtained a pattern consistent with expectation, i.e. diffusion in the vicinity of the 12 o’clock,
3 o’clock and 6 o’clock positions, enabling orientation of the circle (Fig. S5).

Next, we sought to evaluate whether we could apply SCOPE to reconstruct an asymmetric shape. For this, we
fabricated an array of SCOPE beads and cut it into the shape of a “swoosh” resembling the Nike logo (16.75
mm x 9.25 mm) (Fig. 3C). Following the SCOPE reaction, massively parallel sequencing of chimeras and
computational reconstruction, we obtained an optics-free reconstruction of the spatial positions of 54,017
inferred beads that resembles the Nike swoosh (Fig. 3D).

Since the Leiden clustering step, which impacts PAGA initialization, is stochastic, and furthermore given that
the UMAP algorithm itself is stochastic, our computational reconstruction heuristic gives slightly different results
with each run. To evaluate its sensitivity to this, we performed 10 independent computational reconstructions
on the data corresponding to both the circular and swoosh arrays (Fig. S6A,B). To facilitate alignment and
comparison between reconstructions, the median bead-bead lattice edge length was rescaled to 1, and then
each independent reconstruction was aligned to the original reconstruction using rigid transformations
including rotation and reflections across both axes (Fig. 3B,E). After alignment to this common reference
frame, we computed the mean Euclidean error between each pair of reconstruction replicates, a metric that
averages the positioning error across matched pairs of beads. These results showed that reconstructions of
the circular array were highly reproducible (mean error of 0.53; s.d. 0.31 bead diameters), while the
reconstructions of the swoosh were more variable (mean error of 28; s.d. 9.2 bead diameters).

Next we investigated the relationship between sequencing depth and reconstruction error. For this, we
downsampled the total bead-bead interaction counts in the circular array, retaining 5% to 100% of the total
counts. For each downsampling trial, we performed 5 reconstructions and computed the average bead
positioning error relative to reconstruction without downsampling (Fig. 3E,G). These results indicated that a
sequencing depth of ~400 interactions per bead was sufficient to achieve reconstruction of the symmetric array
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(mean error of 1.54; s.d. 0.04 bead diameters). However, when the same downsampling rubric was applied to
the asymmetric swoosh, error worsened upon even modest downsampling (Fig. 3F,H). This suggests that
shapes with complex geometries, e.g. curves and irregular edges, may require more sequenced interactions
per bead for accurate reconstruction. However, the error function used here may be too stringent for such
geometries, as modest differences in curvature are exacerbated by a Euclidean error function. For example, a
slight error in the curve of the swoosh shape could propagate positioning errors to all beads affected by this
partial angular rotation, though it could be argued that geometrically it could all be considered the same error.
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Figure 3: Optics-free reconstruction of 2D shapes with SCOPE. (A) Single channel image of a manually cut circular
bead array with a 7 mm diameter subjected to hybridization of a sequencing primer followed by single nucleotide
extension with dye-conjugated, reversibly terminated dNTPs. Scale bar denotes 1 mm. (B) Computational reconstruction
of the circular bead array shown in panel A with SCOPE. Beads are colored by cluster labels, computed by Leiden
clustering on the bead-bead interaction graph. (C) Single channel image of a bead array manually cut to an asymmetric
“swoosh” shape and stained with SYBR Gold. Scale bar denotes 1 mm. We estimate that the swoosh shape occupies 44
mm?. (D) Computational reconstruction of the asymmetric swoosh-shaped bead array shown in panel C with SCOPE.
Beads are colored by cluster labels, computed by Leiden clustering on the bead-bead interaction graph. (E) Pairwise
mean Euclidean distance between each of 10 independent runs of the reconstruction algorithm on the circular bead array
after alignment to a common reference frame. Units are in bead diameters. (F) Same as panel E, but for asymmetric
swoosh-shaped bead array. (G) Mean Euclidean bead positioning error for reconstruction of the circular bead array with
downsampling of messenger UMIs per bead. Error bars correspond to the range, and points to mean, for 5
reconstructions of each downsampling trial. (H) Same as panel G, but for asymmetric swoosh-shaped bead array.
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An eye examination for SCOPE reconstruction of 2D images

The resolving power of optical systems is constrained by the wavelength of light and the numerical aperture of
their optics. In contrast, DNA-based spatial reconstruction should be limited by diffusion kinetics rather than
optical physics. Although these experiments remain well above the resolution limits of microscopy, we next
sought to test whether SCOPE could reconstruct large images while preserving scale across multiple
resolutions. We also wanted to determine whether it could resolve distinct features—effectively moving from
bead-defined shapes to decoder-defined “color” images. To this end, we performed a virtual eye examination,
using SCOPE to reconstruct elements of the classic Snellen eye chart for visual acuity.

Using a microarray printer, we deposited picoliter droplets of 13 poly(A)-tailed oligonucleotide “paints” (100 um
spot size; 50 ym center-to-center pitch) onto a rectangular 2D SCOPE array measuring 17.18 mm x 40.97 mm
(704 mm?). Three paints were fluorescently labeled, enabling orthogonal visualization by microscopy (Fig. 4A),
which revealed fine striations corresponding to the printer’s line stepping (Fig. 4A, insets). Imaging-based
estimates indicated that each printed oligonucleotide spot covered an average of ~45 beads (s.d. = 1).

After the SCOPE reaction, we generated two sequencing libraries: (i) messenger chimeras encoding
bead-bead proximities, and (ii) decoder chimeras mapping the positions of the microarray-spotted paints.
Sequencing of messenger chimeras identified DNA barcodes corresponding to 1.44 million beads and 2.55
billion unique bead-bead interactions. Sequencing of the accompanying decoder library linked an average of
52 (s.d. = 65) poly(dA)-tailed “painted” molecules to each bead. Applying the computational pipeline described
above, we mapped the positions of paints onto the reconstructed 2D array. However, the initial 2D UMAP
reconstruction exhibited macroscopic distortions, potentially caused by non-uniform diffusion across this large
array during the SCOPE reaction (Fig. S7). To mitigate such effects, we adopted a two-stage embedding
approach: first computing a 3D UMAP from the precomputed k-nearest neighbor distance graph, then
“flattening” the manifold to 2D by generating a second UMAP that used the 3D coordinates as input. This
approach yielded a global map consistent with a reaction confined to a planar slide. We then summed decoder
counts for each paint at each position and visualized the resulting image (Fig. 4B).

With this revised heuristic, the SCOPE reconstruction reproduced the Snellen chart with substantially reduced
macroscopic distortion (compare Fig. S7 vs. Fig. 4B). However, it remained offset to the left, which may be
due to off-center printing during microarray deposition. Residual warping, which gives the appearance of a
weakly curved surface, potentially reflects diffusion dynamics near the edges of the bead array—specifically, a
radial outward bias analogous to capillary flow in an unconfined film. Future refinements, whether experimental
(e.g. imposing a physical barrier to mitigate radial outward bias), computational (e.g. modeling and subtracting
such biases), or both, may help to further improve the fidelity of large image reconstruction.

The Snellen chart assesses visual acuity through letters arranged from largest to smallest. Distinct striated
patterns—mirroring those observed by microscopy (Fig. 4A)—were recovered through at least the third row of
letters when each oligonucleotide “paint” channel was visualized individually, e.g. within the “E” of the first row
(Fig. 4C, top; further confirmed by horizontal and vertical line intensity profiles shown in Fig. 4D) and the “Z” of
the third row (Fig. 4C, bottom).

To further assess fine-scale reconstruction accuracy, we focused on the large “E,” which encompassed
190,790 beads. During reconstruction, SCOPE operates solely on messenger interactions, without access to
decoder information. To compare dimensional fidelity between the printed and reconstructed images, we
measured the lengths of multiple features within the serif-styled letter E that we had printed, normalizing each
feature to the letter’s baseline length. Feature measurements were highly correlated between the optical image
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and SCOPE-based reconstruction (Pearson’s r = 0.96; Spearman’s p = 0.90) (Fig. 4E), indicating that SCOPE
can recover both local and global geometric scales in the micron to centimeter range while preserving
proportional relationships across the image.
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Figure 4: An eye examination for SCOPE. (A) Composite fluorescent image of a Snellen eye chart for visual acuity
printed onto a 2D SCOPE array using a microarray printer. Of the 13 printed oligonucleotides (“paints”), three were
fluorescently labeled—either via dye conjugation (Cy3, Cy5) or inclusion of DAPI in solution—allowing direct microscopic
visualization. Insets show the “E” (top), “O” (middle), and “D” (bottom) for reference. (B) Maximum-intensity projection of
the reconstructed array comprising 1.44 million beads, colored by summed decoder counts across all paints. (C)
Maximum intensity projection of a single oligo channel (DAPI channel oligo) from the “E” in Row 1 and the “Z” in Row 3.
The region corresponding to each letter was cropped from the full reconstruction, rotated, and displayed at different scales
with @ common ruler for reference. (D) Locally binned image showing the sum-of-squared oligo counts per bin, with
horizontal (top) and vertical (left) line intensity profiles corresponding to the red crosshairs. (E) Dimensional fidelity of the
reconstructed “E.” Plotted points show the ratio between each of 10 feature lengths indicated by bars at the right and the

length of the base of the E, measured via optics (‘imaging”) or SCOPE (“reconstruction”) using ImageJ.
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Extending SCOPE to the optics-free reconstruction to 3D volumes

Inspired by the observation that a three-dimensional UMAP embedding improved reconstruction accuracy for
large 2D arrays, we next asked whether SCOPE could reconstruct truly three-dimensional structures. To test
this, we embedded 100 um DNA-barcoded beads within an acrylamide hydrogel matrix by polymerizing the gel
via a dense bead slurry cast into silicone molds of predefined shapes. Specifically, we used 3D molds of a
teddy bear, star, butterfly, and block letter (“E”), each with volumes on the order of 75-100 mm?3. Following
polymerization, SCOPE proximity reactions captured diffusion-limited hybridization events between barcodes
on spatially adjacent beads, generating chimeric molecules that encode three-dimensional neighborhood
relationships. These were sequenced and processed analogously to the 2D bead array experiments to yield
bead—-bead interaction matrices. Applying a 3D implementation of UMAP, coupled with a grid search over key
parameters, we inferred bead positions from these interaction data. Encouragingly, the resulting embeddings
recapitulated the overall geometry of each of the four original molds (Fig. 5A-D).

Exploration of UMAP parameter dependencies informed the reconstruction process (Figs. S8, S9). Increasing
the number of training epochs improved convergence and shape fidelity, while moderate min-dist values (=0.4)
preserved local continuity without excessive fragmentation or inward curling. The “cosine” distance metric
yielded more stable embeddings and eliminated the need to densify the sparse interaction matrix.
Normalization strategies applied prior to manifold learning had smaller effects on reconstruction quality; we
ultimately used a count matrix normalized to 10,000 total counts per barcode and then log-transformed.
Collectively, these observations underscore the importance of careful parameter tuning for achieving accurate
and stable 3D reconstructions.

Although the 3D embeddings recovered by SCOPE captured the global outlines of each molded shape, their
hollow interiors—confirmed by cross-sectional visualization—indicated underrepresentation of beads from
within the gel (Fig. 5E). We attribute this to reduced recovery efficiency of interior beads, likely due to diffusion
constraints or steric hindrance during enzymatic cleavage, ligation, or chimera recovery, rather than limitations
of the reconstruction algorithm itself. Lowering the UMI inclusion threshold from 1,000 to 100 slightly increased
interior density but introduced low-confidence bead clusters inconsistent with the known geometry (Fig. $10).
Because of these missing interior regions, quantitative metrics developed for evaluating 2D reconstructions
were not directly applicable. Accordingly, we selected final embeddings from the range of hyperparameter
combinations explored (Figs. 88, S9), based on subjective resemblance to the expected global geometry of
each molded shape.

Although more work is necessary to address these limitations, these experiments establish that SCOPE can

recover the global geometry of three-dimensional objects directly from molecular proximity data, laying the
groundwork for future volumetric, optics-free spatial reconstructions.
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Figure 5: UMAP reconstructions of 3D volumes with SCOPE. (A) Brightfield image of a bead-embedded
polyacrylamide gel matrix from a teddy bear mold. Yellow scale bar denotes 1 mm. (B) Binary masks of brightfield images
of the silicone molds used to create bead-embedded 3D gels for star, butterfly and letter E-shaped molds. The depth of
each mold is 2 mm. Black scale bars denote 1 mm. (C) Top-views of 3D UMAP reconstructions of the bead-embedded
gels from the bear, star, butterfly, and letter E-shaped molds, using n_neighbors=15, min_dist=0.4, and 1,000 training
epochs on the interaction matrix. Each barcode was normalized to 10,000 total counts per barcode and then
log-transformed. Points are bead barcodes in 3D space overlaid on a concave hull (white) calculated by the Python
package “alphashape” and colored by the log10 UMI count of each barcode. Reconstructions have been rotated to show
the front view. (D) Same as panel C, but side-views. (E) Z-axis cross-sections of 3D UMAP embeddings from
bead-embedded hydrogel reconstructions. Each slice shows reconstructed bead positions at successive depths in the
inferred volume. The absence of points in central regions highlights the hollow character of computational reconstructions,
consistent with reduced recovery of interior beads due to diffusion or steric limitations during SCOPE reaction.
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DISCUSSION

Molecular self-assembly is a defining feature of living systems (39). Biological organization arises from simple
local interactions among molecules and cells—mostly diffusion-limited—that collectively scale from nanometers
to meters, e.g. as when a micron-scale zygotic nucleus encodes the blueprint for a 30-meter blue whale. The
same principle underlies DNA microscopy and related approaches, which exploit proximity-dependent
reactions to infer spatial relationships without optics. Inspired by these concepts and by the physics of
molecular diffusion, we developed SCOPE, which propagates information obtained solely at the micron scale
to derive optics-free reconstructions at the centimeter scale—a span of four orders of magnitude.

SCOPE relies on barcoded hydrogel beads that transmit information about their identity to neighboring beads
through highly localized, diffusion-limited DNA-DNA proximity reactions. We show that this form of pairwise
interaction data can be computationally transformed to reconstruct shapes, images, and volumes of arbitrary
size, given sufficient sampling. A key feature is that SCOPE reactions occur in constant experimental time
regardless of array size. We envision that such self-registering arrays could be broadly useful in spatial
genomics, where current state-of-the-art methods still rely heavily on microscopy—either to map barcode
sequences to spatial positions or to register molecular signals within intact samples. This dependence on
optics imposes an inherent trade-off between physical area and spatial resolution, such that the collection of
large-scale datasets (e.g. spatial transcriptomics of the whole mouse brain (40, 41)) are major efforts rather
than routine experiments.

Independently developed, concurrently reported methods from the Chen (‘imaging-free spatial genomics’) and
Cao (‘IRISeq’) groups also infer spatial relationships through diffusion-mediated barcode exchange but differ in
architecture and computational formulation (32, 33). In their approaches, two bead types—*“transmitters” and
“receivers”—are co-deposited such that oligos from transmitters diffuse and are captured by sparsely
distributed receivers. Each receiver’s unique mixture of captured barcodes defines its neighborhood. In
contrast, all SCOPE beads act as both transmitters (i.e. senders, in our terminology) and receivers, producing
a square, asymmetric bead-bead interaction matrix. Computationally, while all three methods employ UMAP to
infer bead positions, SCOPE differs in how this manifold learning step is applied. The methods developed by
the Chen and Cao groups treat the receiver-sender pairwise interaction matrix as a high-dimensional feature
matrix and apply UMAP directly using preselected hyperparameters. In SCOPE, the interaction matrix is
instead treated as a noisy measurement of the underlying pairwise distance matrix among beads on the planar
slide surface. This matrix is first transformed through simulation and a learnable mapping function to
approximate true distances, and UMAP is then applied directly to this distance matrix, with hyperparameters
optimized dynamically via grid search. In this way, SCOPE’s use of UMAP arguably aligns more closely with
the original design intent of the algorithm: reconstructing the positions of uniformly distributed points on a
two-dimensional manifold, without dimensionality reduction.

Although we focused here on reconstructing shapes, images, and volumes where “ground truth” was known,
extending SCOPE to capture and decode the relative spatial positions of biomolecules or cells within
biologically intact samples is a logical next step. The related work from Chen and Cao (32, 33), as well as the
original DNA microscopy method and its extensions (26, 37), suggests that such biological applications are
feasible. For most spatial genomics applications, the typical geometry will likely be a simple rectangular
monolayer onto which a tissue section of arbitrary size and shape can be overlaid. However, because SCOPE
does not depend on patterned deposition or rigid substrates, it could also be adapted for non-planar
geometries such as curved surfaces or three-dimensional scaffolds. Beyond reconstructing 3D
bead-embedded gels, bead-laden hydrogel matrices could serve as internal scaffolds that conform to hollow
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tissues. For example, embedding a bead-packed gel within a tissue lumen—such as the gut—could allow
surface beads to capture RNA transcripts from adjacent cells while bead-bead associations define the surface
topology. Such an approach could enable simultaneous inference of 3D tissue architecture and spatially
resolved transcriptomic profiles.

Experimentally and computationally, what limits SCOPE? Barcoded beads can be produced at exponential
scales with split-pool strategies and easily cast to generate large 2D arrays. As noted above, the SCOPE
reaction occurs in constant experimental time regardless of array size, and even for very large arrays, reaction
volumes remain ftrivial. At smaller scales, stochastic variation in local diffusion or hybridization
efficiencies—and potential anisotropy in diffusion through heterogeneous media—may introduce noise in the
inferred local distances. In the current implementation, we used 20 ym beads as a tractable starting point for
developing the method. However, although the effective spatial resolution is not solely limited by bead size
alone, it could in principle be improved through a combination of smaller-diameter beads, higher packing
densities, deeper sequencing of molecular interactions, optimization of SCOPE reaction conditions and further
algorithmic improvements.

For large-scale reconstructions such as the Snellen eye chart, sequencing depth of the chimeric
sender—receiver libraries can become a limiting factor. Additionally, for large planar arrays, radial distortions in
diffusion rates present another hurdle for faithful macro-scale reconstruction, which could potentially be
mitigated through experimental refinements. Finally, in 3D volumetric reconstructions, we also observed gross
underrepresentation of interior beads, resulting in reconstructions with hollow centers—likely due to reduced
accessibility of inner beads during enzymatic cleavage, ligation, or chimera recovery. Algorithmically, SCOPE
reconstructions rely on fast graph-based and manifold-learning methods that scale efficiently to millions of
beads, but pushing toward billions will require distributed implementations of the distance mapping and
embedding steps to maintain tractable runtimes.

Modern molecular and cellular biology increasingly merges DNA barcoding (e.g. UMIs, MPRAs, combinatorial
indexing) with spatial anchoring (e.g. massively parallel sequencing) to parallelize experimentation within
single reaction volumes. SCOPE integrates these principles to reconstruct 2D and 3D spatial information in an
optics-free manner. Looking forward, deeper intersections of DNA barcoding and spatial anchoring—both in
vitro and eventually in vivo—may enable new classes of molecular experiments: from molecular computing and
massively multiplexed encoding/decoding, to information exchange among cells during development, or even
spatially coherent DNA automata.
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Figure S1: Barcoded hydrogel bead generation and bead array fabrication. (A) Image of the flow focusing
microfluidics generator while producing polyacrylamide hydrogel beads. (B) 10% polyacrylamide gel of oligos released by
USER-mediated cleavage from the initial bead (round 0) vs. after each round of DNA synthesis by ligation of the barcode
(rounds 1, 2, 3, 4) or functional cap (Cap). Left: DNA size ladder (bp). In the lane corresponding to the initial bead (round
0), the band labeled “stub” corresponds to what is cleaved off the strand that was initially incorporated into the hydrogel
bead, while the the band labeled “splint” is a primer that anneals to the stub to create a 4-bp overhang handle for the
ligation of the first of four splint barcodes (36). (C) 96 sub-barcodes were used in each of four rounds of the split-pool
procedure for barcode generation (36). Shown in the box plot is the percentage of each sub-barcode incorporated to full
barcode at each position. The red line at 1.04% corresponds to uniform incorporation (1/96). (D) Based on amplification
and sequencing of UMIs associated with barcodes enzymatically released from individual beads, together with the fact
that only ~50% of the barcodes have a dU at their stem and are expected to be cleaved, we estimate that each bead
bears 491,811 (interquartile range: 308,757-833,744) functionalized, barcoded oligos. (E) Schematic of a monolayer of
hydrogel beads inside a 6% (v/v) PAA (polyacrylamide) encasing gel. (F) Differential interference contrast microscopy
image of beads in an encasing gel. Yellow scale bar: 100 ym.

19


https://paperpile.com/c/m0IxVg/LWFw3
https://paperpile.com/c/m0IxVg/LWFw3
https://doi.org/10.1101/2024.08.06.606834
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.08.06.606834; this version posted December 23, 2025. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Ensemble pair fractions at 37.0 C Simulation of beads arrayed in hexagonal lattice
|k
hie
c Z TEEL 5 Bead Types 10 Bead Types 15 Bead Types 20 Bead Types 25 Bead Types
D s NN 100
@ 10 ||
o .
13
8
< 754
s 12 QEI
g " 3
Q= m 5]
o o -—
5 2 " wiat 5 504
L . 3
5 & 2
n
g % 25 1
2 H
i . o — |_|
ula a8 S e
] e Homotypic Neighbors

Messenger sequence design

M base pairing detected

Figure S2: Complementarity and predicted outcomes of using twenty pairs of messenger sequence designs. (A)
Fractions of oligos predicted to be bound at equilibrium in a pool of 40 designed messenger cap sequences (20
messenger caps x 2 orientations) at 37°C as estimated by Nupack (42). Complementary strands are adjacent in
numbering (e.g. 1/2, 3/4 ... 39/40). (B) We simulated the random assignment of a given number of bead subtypes to
beads arrayed in a hexagonal lattice and computed, for any given bead, the proportion of immediately neighboring beads
that are of the same subtype (i.e. homotypic neighbors).
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Figure S3: Reconstructing simulated SCOPE bead arrays. (A) Mean Euclidean error of UMAP (green) or t-SNE
(purple) applied to simulated SCOPE bead arrays of different sizes. Mean Euclidean error is measured as the average
difference in distance between an inferred position and the ground truth simulated position after a linear point cloud
registration and point matching. The line shows the median of 5 trials and the shaded areas show the interquartile range.
Units are in bead diameters. (B) A representative simulated rectangular array of 2500 beads reconstructed with UMAP.
Lines indicate matching between ground truth and UMAP inferred positions after linear point cloud registration. Bead
positioning errors are greater at the boundary of the shape. (C) Mean Euclidean error of a simulated and reconstructed
40,000 bead array as a function of simulated sequencing depth. Each point is the median of 10 trials. The shaded blue
area shows the interquartile range for the set of trials.
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Figure S4: Doublet detection by community detection. (A) Doublets are defined as beads that have two spatial
positions but share an identical DNA barcode (ground truth — left). In sequencing data these doublets appear as a single
bead with collapsed interaction networks. (B) Expected rates of doublet occurrence for arrays of a given size. Estimated
by computing the birthday problem for a range of array sizes with a fixed set of 96* barcodes. (C) Doublets detected in
simulation using Leiden clustering and a range of cluster resolutions. Recall and precision are shown with error bars
indicating standard deviation. (D) Examples of detected doublets during reconstruction of the circular array. Highlighted in

red and green are the two communities detected for a single bead (shown in yellow).
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Figure S5: Spotted poly-dA fiducials enable orientation of SCOPE reconstructions of symmetric 2D arrays.
Poly-dA—tailed hash oligonucleotides were manually spotted onto the circular bead array at the 12 o’clock, 3 o’clock, and
6 o’clock positions prior to the SCOPE reaction. During decoding, complementary poly-dT—capped decoder molecules
captured these fiducials, producing locally concentrated clusters of corresponding barcoded sequences. In the
reconstructed array (three versions of which are shown here without rotation or reflection relative to one another), the
three fiducial barcodes are locally concentrated at expected relative positions (red dots), confirming correct geometry and
providing reference points for orienting symmetric reconstructions. X0 and X1 denote the spatial axes outputted by the
reconstruction pipeline.
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Figure S6: Ten iterations of computational reconstruction of circular and swoosh arrays for (A) circular bead array
or (B) asymmetric “swoosh” array. The pipeline was re-run independently for each reconstruction with identical inputs and
initial hyperparameters each time, only varying the random seed. Each reconstruction has been transformed (including
rotation, reflection, scaling) for visualization. X0 and X1 denote the spatial axes outputted by the reconstruction pipeline.
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Figure S7: Initial 2D UMAP result for Snellen eye chart experiment prior to 3D flattening. Maximume-intensity
projection of the reconstructed Snellen eye chart generated using the standard 2D UMAP pipeline applied directly to the
bead—bead interaction matrix. Each point represents a DNA-barcoded bead (n = 1.44 million), colored by the summed
decoder counts across all 13 printed poly(A)-tailed oligonucleotide “paints.” Although major features of the eye chart are
discernible, the reconstruction exhibits macroscopic warping and curvature, likely reflecting non-uniform diffusion during
the SCOPE reaction across this large array.
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Figure S8: Representative results from a parameter grid search performed on the bead-bead interaction matrix
derived from the butterfly-shaped hydrogel mold. The matrix was filtered to include barcodes with at least 1,000 UMIs
and reconstructed using a fixed number of training epochs (n = 1,000) and nearest neighbors (n = 15). Columns show
different normalization strategies: (left) raw count matrix; (middle) normalized count matrix scaled to 10,000 total counts
per barcode and log-transformed; (right) matrix normalized by dividing each entry by its row and column sums, then
symmetrized by averaging with its transpose. Rows correspond to varying min_dist values.
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Figure S9: Representative results from a parameter grid search performed on the bead-bead interaction matrix
derived from the block letter E-shaped hydrogel mold. The matrix was filtered to include barcodes with at least 1,000
UMIs and reconstructed using a fixed number of training epochs (n = 1,000) and nearest neighbors (n = 15). Columns
show different normalization strategies: (left) raw count matrix; (middle) normalized count matrix scaled to 10,000 total
counts per barcode and log-transformed; (right) matrix normalized by dividing each entry by its row and column sums,
then symmetrized by averaging with its transpose. Rows correspond to varying min_dist values.
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Figure S10: Lowering UMI cutoffs for barcode inclusion in 3D reconstructions leads to spurious barcode clusters.
SCOPE sequencing libraries were filtered for barcodes with at least 100 UMIs (left) vs. 1,000 UMIs (right) and
reconstructed in 3D using the UMAP algorithm (1,000 training epochs, n_neighbors = 15, min_dist = 0.4) on the

normalized count matrix.
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Supplementary Materials

Materials and Methods:

Molecular biology methods

Hydrogel bead fabrication

Hydrogel beads were produced through the use of a flow focusing microfluidic device to create water in oil
emulsions (43). First, acrydite-modified oligos were designed and ordered from IDT with the TruSeqR1
(OLG_001:  /5Acryd/TTTTTTT/ideoxyU/CTACACGACGCTCTTCCGATCT) and TruSeqR2 (OLG_002:
ISAcryd/TTTTTTTTTTGTGACTGGAGTTCAGACGTGTGCTCTTCCGATCT) lllumina sequences. Acrydite
oligos were stored at -20°C. The TruSeqR1 handle contained a deoxyuracil for USER enzyme-controlled
cleavage off the bead. To make the polyacrylamide gel beads, a DNA and acrylamide mix (3% (v/v)
acrylamide/bis solution (Sigma), 3% acrylamide solution (Sigma), 48 mM Tris—HCI pH 8.0, 0.25% (w/v)
ammonium persulfate, 0.1X Tris-buffered saline-EDTA (TBSET: 10 mM Tris—HCL pH 8.0, 137 mM NaCl, 20
mM EDTA, 1.4 mM KCI, 0.1% (v/v) Triton-X 100), 50 yM of OLGO001, and 50 uyM of OLG002) was first
prepared. The TEMED (Bio-Rad) catalyst was held out of the aqueous phase to prevent premature
polymerization and added into the emulsion collection tube instead. The acrylamide mix was run through a
droplet generator (Droplet Genomics) set up with a DG-DM-25 chip (Atrandi Biosciences) as the aqueous
phase at 200 uL/hr, along with 2% RAN-008-FS v/v (Ran Biotechnologies) in HFE7500 (Oakwood Chemical)
as the oil phase at 300 pL/hr. The resulting emulsions were allowed to polymerize overnight at room
temperature. To break the emulsions, 150 uL of 1H,1H,2H,2H-Perfluorooctanol, 97% (Thermo Scientific
Chemicals) was added for every 1 mL of beads produced. The bead solution was vortexed and centrifuged for
1 minute at 1000 x g and excess oil was removed from the polyacrylamide bead layer. Two more washes with
a 1:1 ratio of hexane to TBSET were performed to further remove residual oil. Finally, multiple TBSET washes
were performed until all the residual oil was removed.

Hydrogel bead barcoding and functionalization
Four consecutive rounds of splint barcodes were ligated together to build the bead barcodes. Eight plates of

top and bottom oligos were ordered for the four barcode splints (Table S1). The following protocol closely
followed the Delley & Abate protocol to make combinatorially barcoded hydrogel beads (36). Briefly,
polyacrylamide beads were prepared for splint ligation by first annealing primer OLG_003 (Table S2) to the
polyacrylamide-incorporated DNA stub on the bead. This step creates a four base pair overhang as a handle
on which to ligate the first barcoded splint. Barcoded splints were ordered as two separate oligos to form the
top and bottom portions of the splint and mixed at a 1:1 ratio. If the splint components were ordered without a
5’ phosphorylation modification, T4 PNK (NEB) was used to add phosphate groups to the top and bottom
oligos before each round of ligation. For the first round of barcoding, beads were distributed across a 96 well
plate containing barcoded splints and ligated with T4 ligase (NEB). The plate was placed in a thermomixer at
37°C for 2 hours, shaking at 1000 rpm to prevent beads settling at the bottom of the wells. The T4 ligase
reaction was inactivated at 65°C for 20 minutes before the beads from each well were pooled together and
mixed well. The barcoding and split-pooling steps were repeated for a total of four times to create a 96*
combinatorial barcode space.

Once the beads have been uniquely barcoded via splint ligation, a capping sequence was added to the end of
the barcode to functionalize the bead oligo. Since the bead proximity reactions rely on creating 20 subtypes of
beads that can interact with beads of another subtype but not with their own, the beads were divided into 20
pools for 20 separate functionalization reactions. Each functionalization reaction contains 1.5 parts of each of
the 19 antisense capping oligos and 20 parts of the single sense capping oligo (Table $S1;
Sense_messenger_001-020, Antisense_messenger_001-020). For example, one of the reactions would
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contain 20 puL of Sense messenger 001 and 1.5 pL each of Antisense_messenger 002 through
Antisense_messenger_020 (Antisense_messenger_001 was left out). The entire mixture of 19 antisense to
one sense oligos was then mixed with a poly-dT capping oligo (Table S1; Decoder_001) at a 1:1 ratio, and
then ligated onto the fourth bead barcode splint with T4 ligase. Thus, both decoder and messenger species
were loaded onto the bead barcodes and the beads were able to perform poly-A molecule capture and
bead-bead proximity interactions, respectively. Finally, to get rid of incomplete DNA oligo stubs resulting from
inefficiencies at any of the previous ligation steps, beads were treated with Exol nuclease after annealing
complementary oligos to all possible functional 3’ caps. Beads were then stored at 4°C for up to one year.

tin nsel ked monolayers of bari immobiliz n gl i

To immobilize barcoded beads in a dense monolayer, 15 L of packed beads were first mixed with 2.75 uL of
Bis-acrylamide 37.5:1 (Bio-Rad) to form a bead slurry. 0.55 uL of freshly prepared 5% (w/v) APS (Bio-Rad)
was added to the bead slurry and the entire solution was pipetted as a large droplet onto a 25.4 mm x 76.2 mm
microscope glass slide functionalized with 3-(Trimethoxysilyl)propyl methacrylate (Sigma-Aldrich) as described
previously (22). A 22 mm x 22 mm coverslip was placed over the bead slurry and lightly pressed down to
spread the beads into a single layer. These reagent volumes were scaled for casting larger arrays. The
spreading of the beads was checked by eye under the microscope to ensure a densely packed monolayer
under the area of the coverslip.

Once beads have been spread underneath the coverslip in the acrylamide mixture, we sought to polymerize
the acrylamide directly onto the functionalized glass surface. As oxygen inhibits the polymerization reaction, a
chamber was prepared using a one-gallon Ziploc bag filled with inert argon gas to flush out the oxygen or set in
an anaerobic chamber (Coy Labs). To catalyze the polymerization of the encasing gel, 2% (v/v) TEMED
solution was pipetted around the edges of the coverslip and the slide was placed in an anoxic chamber
overnight. Once the gel had polymerized, the glass slide was incubated in a tray with enough water to cover
the slide for at least 10 minutes at room temperature. After the encasing gel had been hydrated, a new razor
blade was inserted under the edge of the coverslip and used to peel the coverslip away from the bead array. 1
mL of water was then used to rinse the bead monolayer for a total of five times, and the rinsed slide was
placed into a tray with enough water to cover the monolayer for 10 minutes. These rinsing steps were for
washing off unpolymerized acrylamide monomers in the encasing gel that inhibit subsequent PCR reactions.
The bead monolayer was then dried uncovered in the fume hood and stored at 4°C until use.

Printing images on bead arrays with oligonucleotide inks
Thirteen poly-dA oligos (OLG_007 through OLG_019) were first reconstituted to 100 uM in IDTE pH 7.5 and

then diluted to 1 uyM in printing buffer (0.01% Tween-20 (v/v) and 0.5% (v/v) glycerol). Because the
FAM-conjugated poly-dA oligo displayed weak fluorescent signal during imaging, DAPI was included into the
printing buffer for this particular oligo so that those spots emitted fluorescence in the DAPI channel. Each oligo
was loaded into a separate well of a 384 well-plate (Scienion CPG-5502-1) and spotted using the Scienion
Sciflexarrayer S3 using a piezo dispense capillary 100 (PDC 100). A custom map was loaded for each oligo
and prints were conducted serially with a spot-to-spot spacing of 100 um with a pitch of 50 um. After printing,
the bead array was imaged using the Keyence BZ800 with a 4x objective. Tiled images were stitched and
saved for image processing.

SCOPE reactions for messengers and decoders (circular and asymmetric arrays — Fig. 3)

The desired shape was made in the dried bead monolayer by scraping the excess beads off the glass slide
with a clean razor blade. To constrain poly-dA hashing oligos to specific areas of the bead monolayer for
capture, 0.2 pL of 0.1 yM poly-dA hashing oligo (Table $2; OLG_004 through OLG_006) was pipetted directly
onto the bead monolayer and let dry in the fume hood. Next, a silicone chamber (Grace Bio-Labs, 20 mm
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diameter, 2.5 mm height) with an adhesive back was adhered to enclose the shaped bead monolayer. For the
USER and reverse transcription reaction, a master mix of 1X CutSmart (NEB), 1X SuperScript IV RT Buffer
(Thermofisher), 500 yuM dNTPs (NEB), 67 U/mL of USER enzyme (NEB), 10000 U/mL of SuperScript RT
Enzyme (Thermofisher) was prepared. For a 20 mm diameter chamber, 50 pL of USER and reverse
transcription master mix was added to the center of the bead monolayer. An 18 mm diameter glass cover slip
round was gently placed on top of the bead monolayer so that the master mix is spread evenly underneath the
coverslip and covers the entire area of the monolayer.

The slide was then placed in a pre-warmed thermal cycler with an adaptor that can directly transfer heat evenly
from the thermal cycler block to a glass slide. Care was taken to ensure that the lid of the thermal cycler does
not press down on the slide with the adherent chamber, with PCR tubes placed at the edges of the thermal
cycler block to keep the thermal cycler lid off the slide. The glass slide was then incubated at 37°C for 15
minutes and 55°C for 15 minutes for the USER and reverse transcriptase reactions, respectively. Once the
USER and reverse transcription reaction were finished, the slide was taken out of the thermal cycler and a
clean razor blade was used to carefully remove the coverslip on top of the bead monolayer. To collect the
USER-cleaved barcodes from the bead monolayer, which form the sender-decoder and proximal poly-dA oligo
chimera, 200 uL of water was added into the chamber and a P200 pipette was used to triturate the solution
gently. The entire volume of solution inside the chamber was collected into a new 1.5 mL tube, which was then
used for generating the library of poly-dA molecules that have been captured by a spatial bead barcode.

To collect bead interaction information, which is based on sequencing counts of sender-messenger and
receiver-messenger chimeras, the bead monolayer in the chamber was washed three more times with 300 L
of water. After removal of the last wash, 100 yL of 0.1 M NaOH was added into the chamber, covering the bead
monolayer. The solution was incubated at room temperature for 15 minutes to denature the sender-receiver
chimeric molecules off of the beads. Then, the entire volume of the chamber was collected into a new 1.5 mL
tube. 100 pL of 0.1 M Tris-HCI pH 8.0 was pipetted into the chamber and triturated gently several times with a
P200 pipette to neutralize the previous NaOH wash and rinse the remaining denatured sender-receiver
chimeric molecules from the bead monolayer. The entire volume was then collected from the chamber and
added to the 1.5 mL tube with the previously collected NaOH wash.

A SPRI reaction was performed on the entire poly-dA collection volume to size select for the decoder library
and eluted in 20 pL of water. On the entire volume of denatured sender-receiver messengers, a SPRI cleanup
was performed and eluted in 20 uL of water. These two elutions were then prepared as lllumina sequencing
libraries via an indexing PCR step to add the lllumina handles and sequencing indices.

Indexing PCRs for SCOPE libraries (circular and asymmetric arrays — Fig. 3)

A 30 uL indexing PCR reaction was prepared with 15 uL of NEBNext High-Fidelity 2X Master Mix (NEB), 10 uL
of template DNA (SPRI purified from the previous section), and 4 yM each of forward and reverse indexing
primers (Table S2). Messenger reactions used TruseqP5 (OLG_025) and Truseq P7 (OLG_026) indexing
primers, while decoder reactions used NexteraP5 (OLG_028) and TruseqP7 (OLG_026) indexing primers.
SYBR Green was added to track the number of PCR cycles before saturation and the PCR was performed with
an annealing temperature of 69°C and an extension time of 45 seconds. The PCR reaction was stopped before
the qPCR SYBR Green curve went past the exponential phase. A final SPRI cleanup was performed on the
crude PCR product from the decoder-polyA molecule capture library, as well as a final SPRI cleanup of the
crude PCR product from the sender-receiver messenger library. The concentration of the libraries was
quantified using a High Sensitivity D1000 ScreenTape on a TapeStation 4200 system. Most sequencing runs
were performed with P2 200 cycle kits on NextSeq 2000 (lllumina) with standard chemistry. Reads were
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paired-end spanning 105 base pairs for Read1, 105 base pairs for Read2, and 10 base pairs for both P5 and
P7 indices. This read structure provides two times the sequencing coverage over the portion where annealing
happens in the chimeric sender-receiver molecule. The same read structure can also accommodate the
decoder-captured poly-dA molecule library, so that it can be sequenced on the same run as the messenger
library. To increase sequence diversity, between 10 and 15% Phi-X was spiked into the sequencing library and
runs were loaded at 850 pM.

SCOPE reactions for messengers and decoders (large eye exam array - Fig. 4

Since the oligo spots that were printed onto the bead array show outwards diffusion as in Fig. $7, we sought to
limit the diffusion of these printed oligos so that letter shapes with sharp boundaries can be recovered. After
the oligos were printed on the bead array, three poly-dA oligos (OLG_020 through OLG_022) were diluted to
0.1 uM and a single oligo was used in consecutive washes of the array. Thus, we could soak up the available
decoder molecules on the beads that were not in contact with the printed oligo spot through hybridization with
these background poly-dA oligos.

Given the larger size of the bead array for the eye exam diagram reconstruction compared to the previous
circular and asymmetric arrays, the reaction volumes were scaled accordingly based on the fold change in
surface area of the arrays. A glass coverslip was placed on top of the bead array during the two-phase USER
and reverse transcriptase reaction, as described for the circular and asymmetric arrays. To collect the
supernatant containing the sender-decoder and poly-dA oligo chimeras, the array was washed with a low salt
buffer (10 mM Tris-HCI pH 8, 10 mM NaCl, 3 mM MgCI2, 0.1% (v/v) Tween-20, 0.1% (v/v) NP-40). The
messenger library was collected by incubating the array in 300 uL of 0.2 M NaOH at room temperature for 7
minutes and quenching with 50 yL of 1 M Tris-HCI pH 8. The collected decoder and messenger libraries were
then SPRI purified as described for the circular and asymmetric arrays.

Indexing PCRs for SCOPE libraries (large eye exam array — Fig. 4)

For the decoder library with captured poly-dA hashes, a 200 uL indexing PCR reaction was prepared with 100
uL of NEBNext High-Fidelity 2X Master Mix (NEB), 90 uL of template DNA (SPRI purified from the previous
section), and 0.2 pyM each of NexteraP5 forward (OLG_028) and TrusegqP7 reverse (OLG_026) indexing
primers (Table S2). SYBR Green was added to track the number of PCR cycles before saturation and the PCR
was performed with an annealing temperature of 60°C and an extension time of 30 seconds. The PCR reaction
was stopped at 6 cycles. A 0.8X SPRI cleanup was performed on the crude PCR product from the decoder
library to generate the final sequencing library.

For the messenger reactions containing bead proximity information, a 300 yL PCR reaction was prepared with
150 uL of NEBNext High-Fidelity 2X Master Mix (NEB), 100 uL of SPRI purified messenger products, and 0.2
MM each of TrusegqP5 forward (OLG_023) and TruseqP7 reverse (OLG_024) primers (Table S2). These
primers did not contain a sequencing index, which would be later added in the subsequent PCR reaction.
SYBR Green was added to track the number of PCR cycles before saturation and the PCR was performed with
an annealing temperature of 63°C and an extension time of 30 seconds. The PCR reaction was stopped at 8
cycles. Two consecutive 0.85X SPRI cleanups were performed. The SPRI purified template was then put into a
100 pL indexing PCR reaction with 50 pyL of NEBNext High-Fidelity 2X Master Mix (NEB) and 0.2 yM each of
TruseqP$5 forward indexing (OLG_025) and TrusegP7 reverse indexing (OLG_026) primers (Table S2). Both
libraries were sequenced on both the Illumina Nextseq 2000 and Novaseq as previously described for the
circular and asymmetric arrays.

Fluor nce in situ hybridization
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For FISH of fiduciary barcode probes, a similar procedure was followed where arrays were washed in 1 mL of
6X SSC three times before incubation with 1 uM of fluorescence-conjugated oligos (Table S2; OLG_029 and
OLG_030). Primers were hybridized to the bead barcodes at 37°C for 30 minutes. After primer hybridization,
unbound primers were removed and the array was washed 3 times with 1 mL of 1x PBS with 0.01% (v/v)
Tween-20. The bead array was then imaged on the Keyence BZ-X800 microscope using EGFP and Cys5 filter
sets from Chroma using a 10x objective (NA 0.45, Nikon).

Casting bead-packed 3D gel scaffolds
A dense slurry of 100 um DNA-barcoded beads was mixed into 4-6% final polyacrylamide concentration (15:1

acrylamide:crosslinker) and 0.7% APS. After coating the inside of the desired mold with 1-2 yL of TEMED, the
bead slurry and encasing gel was pipetted into the mold and allowed to polymerize at room temperature for 20
minutes. Once polymerized, the gel matrix was released from the mold and soaked in 10 mL of water for 10
minutes. The polymerized gel was then washed with 1 mL of water for a total of three times. Gels were stored
in water until ready for use on the same day.

SCOPE reactions for bead-embedded gel matrices (3D reconstructions — Fig. 5)

The polymerized bead-embedded gel was then transferred to a 2 mL-Eppendorf tube. A 150 yL master mix
was prepared with 75 pL of NEBNext High-Fidelity 2X Master Mix (NEB), 8 pL of USER (NEB), and 1X
rCutSmart (NEB) and transferred to the sample. Depending on the size of the polymerized gel, a larger volume
tube and higher volume of master mix may be required to submerge the gel in the master mix. The tube was
then incubated at 37°C for 30 minutes and slowly ramped up to 72°C over the course of another 30 minutes.

To collect bead interaction information, which is based on sequencing counts of sender-messenger and
receiver-messenger chimeras, the polymerized gel was washed three times with 1 mL of water. After removal
of the last wash, 150 yL of 0.1 M NaOH was added into the tube, submerging the bead-embedded gel object.
The solution was incubated at room temperature for 10 minutes to denature the sender-receiver chimeric
molecules off of the beads. Then, the entire volume of the tube was collected into a new 1.5 mL tube. 150 uL
of 0.1 M Tris-HCI pH 8.0 was then pipetted into the tube and triturated gently several times with a P200 pipette
to neutralize the previous NaOH wash and rinse the remaining denatured sender-receiver chimeric molecules
from the beads. The entire volume was then collected from the chamber and added to the 1.5 mL tube with the
previously collected NaOH wash. For larger 3D matrices, a larger volume of denaturing and quenching solution
may be required to submerge the object.

On the entire volume of denatured sender-receiver messengers, a 1.0 X SPRI cleanup was performed and
eluted in 20 uL of water. The elution was then prepared for lllumina sequencing via an indexing PCR step to
add the lllumina handles and sequencing indices (same indexing PCR reactions as the ones for 2D SCOPE
reactions).

Computational methods

Fastq read processing for bead-bead interaction matrix

From the fastq file of sequencing the messenger library, the four 10-bp sub-barcodes of the combinatorial
spatial barcode were extracted from Read1 and error corrected to known barcodes through the following
process. In our final bead barcode, known 4-bp “scars” exist between each of the sub-barcodes from ligating
the barcoded splints together. Additionally, the set of 96 sub-barcodes at the first position contain extensions
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between 0 and 3-bp, which need to be determined to extract the rest of the sub-barcodes. To do so, each pair
of sequencing reads was first mapped to scar sequences to determine the extension length of the first of the
four sub-barcodes (between 0 and 3-bp), as well as the positions of each sub-barcode. Next, the four extracted
sub-barcodes were mapped to true sub-barcode sequences. The annealed portion between the sense and
antisense ends of two bead barcodes were also mapped to known messenger sequences.

For error correction of the sequences, certain numbers of substitutions were allowed to account for sequencing
errors via calculating the Levenshtein distances between them. The Levenshtein distance between two
sequences is the minimum number of single-base edits (insertions, deletions or substitutions) required to
change one sequence into the other. For scars mapping, we tried different extension lengths and took the
extension length that minimizes the Levenshtein distance and then allowed the Levenshtein distance to be
lower than 2. For barcode mapping, we allowed each of the 4 barcodes to have a Levenshtein distance lower
than 2. For mapping of the annealed region between the two barcodes, we corrected sequences up to 2
Levenshtein distance away from known messenger sequences.

Fastq read processing for poly-dA oligo capture library
From the fastq file of sequencing the decoder library, the four 10-bp sub-barcodes of the combinatorial spatial

barcode were extracted from Read1 and error corrected to known barcodes following the same process as the
one for the messenger library. The poly-dA oligo’s barcode was extracted from the first ten base pairs of
Read2, and the number of UMIs from the Read1 spatial barcode indicated how many poly-dA oligos were
captured.

Quantifying bead-bead Interactions

After error-correcting the sequencing reads for the messenger library, we performed 3 steps of filtration to
determine real barcodes in our dataset. We first filtered the reads by collapsing interactions between the same
pairs of UMIs. Next, we filtered the barcodes by the number of times they appear, keeping barcodes that
appear at least “x” number of times, which was determined by where the steepest drop-off occurred in a knee
plot of UMI counts. Finally, we filtered for barcodes that appear in both reads sent from beads and reads from
receiving beads. We then encoded each bead barcode into a unique integer, and counted the number of
interactions between every pair of barcodes. These steps result in an asymmetric interaction count matrix
where the rows are barcodes being sent from beads and the columns are barcodes being received by beads.

This interaction count matrix was then stored in the sparse matrix format.

Doublet detection to remove sets of beads that share the same DNA barcode

Since large numbers of beads were present in the arrays, a non-negligible number of beads may be doublets,
i.e. beads that do not have a unique DNA barcode. The theoretical number of doublets in an array is a function
of the number of possible barcodes (N) and the number of beads in the array (n):

1— 1_% n—1
Expected_number_doublets = [ ( ) -n]

We performed clustering-based doublet detection to remove such beads. We first built an unweighted graph
with the interaction count matrix: if two beads had non-zero interaction counts, there was an unweighted edge
between the nodes representing these two beads in the graph. Next, we iterated through each node in the
graph and performed Leiden clustering to find communities among its neighbors. The threshold we set for a
bead being a doublet was as follows: the neighborhood of the bead should form more than 1 cluster and the
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largest cluster must be less than 4 times the size of the second largest cluster. Since the number of doublets
detected depends on the selected clustering resolution and varies across datasets, for each dataset we
performed a grid search on the resolution parameter. We selected the clustering resolution that identified a
number of doublets closest to the theoretical value.

Custom simulation of diffusing messenger oligos from beads arrayed in hexagonal lattice
We developed a simulator to guide development of inference methods. To develop the simulator, we did an

empirical investigation to understand the decay of bead-bead interaction across distance, and landed on an
inverse-square model (Fig. 2H). We also used a simple binomial model of bead compatibility. To do a full
simulation, we combined the inverse-square weight function with a sample dataframe giving joint row and
column read counts to get a per-bead sender and receiver read count, then used multinomial sampling to get
the desired number of reads. This ensured that the joint distribution of read counts in the simulation matched
those from real data.

Mapping from sender/receiver interactions to pairwise bead distances
Sequencing of the sender-receiver reaction products yields a bead-bead interaction count matrix. This matrix

represents the counts of all observed interactions involving an oligo diffusing through space from one bead to
another. Thus, it is in essence a “similarity” matrix; higher counts indicate beads that are closer together in
space. However, it is not a symmetric measure, as the sending and receiving counts for each pair of beads are
represented separately. This similarity matrix is highly sparse, as interactions for most pairs of beads that are
not sufficiently close are not observed. Since most methods for reconstructing position data require Euclidean
distance matrices as input, we sought to devise a way to map from our similarity matrix, i.e. the measured
counts of sender/receiver interactions, to a distance matrix.

Using our custom simulation, we can generate such interaction count matrices alongside simulated bead
positions, arranged in a hexagonal lattice. The simulation is parametrized with the per-bead messenger oligo
count distribution from the empirical data. After normalizing this count matrix by the total number of molecules
sent and received by each bead and averaging the matrix with its transpose, we arrive at a symmetric similarity
matrix. We then use a random forest model to perform regression between the normalized pairwise bead-bead
similarities for each pair of simulated beads and the corresponding pairwise Euclidean distances from the
simulation. We then use this regression function, trained on a simulation, to map our observed, normalized
similarity matrix from an experiment to an inferred pairwise distance matrix.

However, this distance matrix has several flaws, chiefly that all the “zeros” in the similarity matrix have been
mapped to a single distance value, as per the nature of a regression function. Therefore, our distance matrix is
only an approximation of the true pairwise distances between the beads, since the diffusion process that we
observe in the form of our interaction matrix only measures discrete molecular binding events. Thus, an
important property is that our distance matrix is most accurate at local distances. This precludes the use of
classical methods such as Multi-Dimensional Scaling to compute the inferred bead positioning.

lusterin n mputing global reconstruction
Rather, we opted to use Uniform Manifold Approximation Projection (UMAP) to compute the inferred bead
positioning. Most often used as a manifold learning algorithm for dimensionality reduction and visualization,
UMAP algorithms can also accept as input a pairwise precomputed k-nearest neighbor distance matrix.
Although UMAPs are usually said to introduce significant error in dimensionality reduction, our problem is
fundamentally a 2-dimension-to-2-dimension mapping problem, and thus avoids the reconstruction error issue.
The superior performance of UMAP at larger scales according to our simulated results informed the choice of
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UMAP over t-Distributed Stochastic Neighbor embedding (Fig. S3A).

We apply three pre-processing steps to the data. First, we identify “doublet beads” according to our method
described above, and remove them. Using the normalized similarity matrix as an adjacency matrix, we can
construct a graph such that beads are represented by vertices/nodes and edges between them are weighted
by the normalized similarity. We then apply a published method for pruning “short circuit edges” in the
bead-bead interaction graph that confound the reconstruction (28). Finally, we compute the “k-core” of the
bead-bead interaction graph after doublet beads and spurious edges have been filtered out- that is, we
compute the largest subgraph such that all nodes have a minimum degree of “k”, which is set to 100 (using an
implementation in the NetworkX package). This is done to ensure that only beads with sufficient information for
spatial mapping purposes are kept.

This filtered bead-bead interaction graph is then clustered using the Leiden community detection algorithm to
group beads into clusters of at most 2500 beads. We convert the pairwise bead-bead similarity matrix to a
pairwise distance matrix using the method described above. However, since we would like to run UMAP with a
nearest neighbors value higher than 100 (the minimum degree in the network), we need to partially impute the
“missing” pairwise distance values for which there were no observed bead-bead interactions. To do this, we
predict the pairwise distance value for O counts using our regression function, and within each cluster of beads,
we impute any missing pairwise distances with this value. In this way, we can then compute a k-nearest
neighbor pairwise distance matrix with k=250, and use this precomputed sparse distance matrix as input to
UMAP. We initialize the UMAP using the PAGA algorithm(44). PAGA provides a force-directed layout
visualizing relationships between the bead clusters, in a manner that accurately represents the shape of the
underlying manifold. We use this to provide initial estimates of the centroids of each cluster, and then initialize
the beads in each of these clusters as being randomly distributed around these centroids according to a 2D
Gaussian distribution. We first compute an “initial UMAP” using this as its initialization and using fixed
hyperparameters.

We perform a grid search over the “min_dist” and “repulsion_strength” UMAP hyperparameters in order to
refine the solution. We define two metrics for hyperparameter selection; the inferred solution should be
contiguous (since we expect one unified sheet of beads, not broken up into “islands”), and the beads in the
solution should be as evenly spaced as possible. To assess the first criterion, we represent each putative
reconstruction (for each hyperparameter value) as a binary image such that each pixel, each spanning an
equal area of the reconstruction point cloud, is colored black if it has any points within it. This image is then
“eroded” using the scikit-image package to remove artifacts, followed by image segmentation using the
Chan-Vese algorithm. All solutions with more than one large object detected are discarded.

Finally, from the set of such valid solutions, we select the solution that has the most evenly spaced points by
first computing a 2D histogram of the point cloud to quantify the density map of the inferred bead positions. We
then calculate a chi-squared test statistic between this distribution of per-bin bead densities and the uniform
distribution, and select the solution that has the lowest test statistic as being closest to a uniform density of
beads. In this way, we are able to select the most optimal UMAP result over the hyperparameters in the grid
search.

Downsampling experiment and evaluation of -SNE vs UMAP
In order to determine how the reconstruction accuracy varies with the sequencing depth of the sender/receiver

library, we designed a synthetic downsampling experiment. We simulated a 40,000 bead array using the
framework above, parametrized using the counts of the asymmetric array experiment. We then downsampled
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the total counts of the simulated bead-bead interaction matrix to various levels ranging from 1% to 100% of the
total counts. For each chosen downsampling percentage, we attempted to reconstruct the spatial positions of
the beads and align them to the true known positions of the beads according to the simulation.

This registration was done in the following way. In a real-world experiment, if more information is provided on
bead positions through bead segmentation on brightfield or fluorescence microscopy images, we could then
align the inferred positions to the true positions. The alignment can be done by matching the positions of
“fiducial” beads, identified through hybridization to an oligo probe complementary to a partial bead barcode
sequence. However, since the precise one-to-one matching of fiducial beads is not known, we apply an
algorithm for the linear sum assignment problem, or the minimum weight matching problem for bipartite graphs
(implemented in scipy). In essence, the set of inferred positions for the fiducial beads can be represented as
one partition of vertices, while the true positions represent the other partition. The weights of the edges
between these partitions of vertices are defined by the pairwise distances between their respective positions.
The linear transformation that aligns the fiducial bead positions is learned through gradient descent,
recomputing the bead point matching at every iteration and minimizing the mean Euclidean error of the

matched points. The linear transformation is parameterized according to
[ i ] = ([ . Z ][ i ] + [ ; ]) @[ . ] for a total of 8 free parameters. After an initial alignment of the

fiducials, the point matching is then computed for all points. An optimal linear transformation to align all the
points is then performed and the point matching is recomputed.

The final point matching is then used to determine the final positions of the beads. Instead of using the inferred
positions of the beads, we use the positions of their inferred match, in effect “snapping” the inferred positions
onto the experimental lattice. In this way, we eliminate much of the positioning error as long as the matches are
correct. The result from these steps thus represents the more refined result that can be obtained using simple
brightfield microscopy and segmentation, and was applied to results from the simulation in order to quantify
reconstruction error (Fig. S3). We repeated this process 10 times for each downsampling percentage and
computed the mean Euclidean error of the inferred bead positions after alignment (Fig. $3). On the x-axis, we
plot the mean messenger UMI counts per bead after downsampling.

In order to evaluate the accuracy of t-SNE vs UMAP at various scales, we simulated rectangular hexagonal
lattice bead arrays at various different sizes and computed the t-SNE and UMAP reconstructions on this
bead-bead interaction data without breaking up the graphs into clusters. The reconstructions were then
registered and point matched to the ground truth as above, and the mean Euclidean error was calculated. The
median and interquartile range of 5 trials were plotted for each simulated array size.

R ing the | n the Snell :
For the Snellen diagram experiment, there were a few differences in how the reconstruction was performed
due to the scale of the experiment. First, instead of using the full “k-core” algorithm to remove beads with low
degree, we simply removed all beads with less than a degree of “k” in one step. Although this does not ensure
that the resulting graph will have a minimum degree of “k”, this was done for memory reasons and yields
roughly similar results. Second, in order to minimize observed distortions in the reconstruction, we kept the
remainder of the pipeline the same but computed the initial UMAP using 3 dimensions, rather than 2. This 3D
UMAP was then reduced to 2D to produce the final result in a second UMAP step, computed using a KNN with
a Euclidean distance metric on the 3D result (k=50), yielding our final result (Fig 4B). We were unable to
perform the hyperparameter gridsearch, also due to memory constraints. We then visualized individual letters
by cropping the corresponding regions in the reconstruction (Fig 4C). We created a binned image of the large

37


https://doi.org/10.1101/2024.08.06.606834
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.08.06.606834; this version posted December 23, 2025. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

letter “E” by tiling the reconstruction point cloud with equally sized squares, and summed up the squared
counts of the captured DAPI oligo to visualize the banding pattern (Fig. 4D). Horizontal and vertical line plots
were computed using the values in the bins that the lines intersected at each axis coordinate.

Segmentation of imaged fiducials and alignment with reconstruction

To validate the accuracy of our local reconstructions, we sought to determine whether the results agreed with a
partial ground truth obtained through optical sequencing. To this end, we stained the SCOPE array with a Cy5
channel (OLG_029) and FITC channel FISH probe (OLG_030) which hybridized to two distinct groups of
barcodes found only on a small subset of beads. The SCOPE array was imaged using a Keyence microscope
at 10x (NA 0.45, Nikon) using the EGFP and Cys5 filter sets from Chroma. We then applied segmentation and
point registration on the acquisitions in the following manner. First, image channels from the acquisition were
merged into a single gray scale image by summing all pixel intensities. Next, we subtracted the background
intensity and split the single-channel image into 36 equally sized tiles to optimize shape segmentation by Meta
Al's Segment Anything Model (v1). This deep learning model was used to generate masks and centroids of
FITC beads using the model’s default parameters. These centroids were then merged together to generate a
final point cloud representing beads hybridized by the FITC probe. The positions of the beads with barcodes
that match the FITC probe targets were registered using the methods described in the global reconstruction
section above. The optimal linear transformation that was learned was then applied to the Cy5 probes as
secondary validation.

Supplemental Text

Figs. S1 to S9
Inline with text

Tables S1 to S2

Table S1. Oligonucleotide sequences to generate barcoded and functionally capped SCOPE beads. The
full bead barcode consists of four sub-barcodes that are 10 base pairs each. Two 96 well plates of
oligonucleotide sequences are provided within each sheet, named “BC1”, “BC2”, “BC3”, and “BC4”. The two
plates consist of the top and bottom sequences of a barcoded splint with ligation overhangs. Once fully
barcoded with four rounds of splint ligation, beads are capped with one species of a decoder sequence for
capturing polyA-molecules, and twenty species of messenger sequences for capturing barcode-barcode
interactions. The twenty pairs of complementary messenger sequences used in SCOPE, as well as the
decoder sequence, are provided in the “Functional caps” sheet.

Table S2. Oligonucleotide sequences for SCOPE bead array experiments. Poly-dA oligonucleotides used

for the oligo-painted image, sequencing primers to generate the messenger and decoder libraries, and FISH
primers are included.
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